| 17: Linked List and
Pointer Problems

Alex Steiger
CompSci 207: Spring 2024
2/19/2024

Logistics, Coming up

« Monday, 2/19 (today)

« Project 2: Markov Due
» Project 3: DNA out by tomorrow

 Thursday, 2/22
« APT Quiz 1 due

* Next Monday 2/26

« Nothing due ©
« Work on Project 3: DNA, due the following week

Today's Outline

« Part 1: LinkedList review + low-level details
« Part 2: Implementing DIYLinkedList

» Part 3/ Wed: Working directly with List Node
objects, algorithmic problem-solving
1. Getto indexth node
2. Append one list to another
3. Reverse alistin place

What is the runtime complexity of the reverseCopy method as a function of n where n is the
size of myList? * [}

22 public static List<Integer> reverseCopy(LinkedList<Integer> myList) {

23 List<Integer> reversed = new LinkedlList<();
24 for (Integer val : mylist) {
25 // adds val to front of list
26 reversed.add(@, val);
27 }
28 return reversed;
29 }
O om
v oo
() omnr2)
() onr3)

2/14/2024 CompSci 201, Spring 2024, LinkedList

3

What is the runtime complexity of the removeZeros method be as a function of n, the number
of elements in the list? Answer in the worst case / without making any assumptions about the
elements of the input myList. * [T}

8 public static void removeZeros(LinkedList<Integer> myList) {
9 for (int 1=0; i<mylList.size(); i++) {

10 if (myList.get(i) == 0) {

11 myList.remove(i);

12 }

13 }

2/14/2024 CompSci 201, Spring 2024, LinkedList

4

What is the runtime complexity of the removeZeros method be as a function of n, the number
of elements in the list? Answer in the worst case / without making any assumptions about the
elements of the input myList.

The Java APl documentation clarifies that the remove() method on an Iterator "Removes from
the underlying collection the last element returned by this iterator." * [T}

6 public static void removeZeros(LinkedList<Integer> myList) {
7 Iterator<Integer> listIter = myList.iterator();
8 while (listIter.hasNext()) {
9 i1f (listIter.next() == 0) {

10 listIter.remove();

11 }

12 }

13 }

O o

@/ O(n)

() omr2)

() onr3)

2/14/2024 CompSci 201, Spring 2024, LinkedList

Linked List, Low-level
DIY perspective

Contrasting

YO

Ur comp

Array/ArrayList

Elements laid out sequentially, one at

a time, in order, in memory.

LinkedList

now things look to
uter / in memory

Elements at arbitrary locations in
memory, connected only by
references to the next element.

myArray
l myLinkedList
5 17 6 7 / 17
5 \\
P 11
6
2/14/2024 CompSci 201, Spring 2024, LinkedList

Memory and references

* In Java, variables for reference types (anything
that is an object/not a primitive) really store the
location of the object in memory.

« Can have multiple references to the same object
IN memory!

6 List<String> words = new LinkedlList<>();

7 words.add("CS"); Prints [‘CS”, “2017],

8 List<String> otherWords = words; O‘nly-one actual

9 otherWords.add("201"); ords List in memory!
10 System.out.println(wo ris);/

otherWords . cs)01

2/14/2024 CompSci 201, Spring 2024, LinkedList 9

Multiple objects or multiple
references

Java creates a reference type object in memory
only when the code calls the new operator.

11 List<String> 1listA = new LinkedList<>();
12 List<String> 1listB = new LinkedList<>();

First example create 2 distinct empty lists, but...

11 List<String> 1istA = new LinkedList<>();
12 List<String> 1istB = listA;

Second example creates one list in memory with
two references / variable names.

2/14/2024 CompSci 201, Spring 2024, LinkedList 10

Pass by value of reference

12 public static void removeFront(List<String> words) {
13 words.remove(0);
14 }

« Java does NOT copy all of words when we call this
method.

« Copies the reference (memory address) and passes
that, O(1) time [memory addresses are 64 bits].

» Changes relevant outside of method.

6 List<String> words = new LinkedList<>();

7 words.add("CS"); Prints [| (empty), change to
8 removeFront(words); words in method changes
9 System.out.println(words); the only List in memory.

Different for primitive types.
2/14/2024 CompSci 201, Spring 2024, LinkedList 11

More Pass by value of reference

« Why does it matter that Java passes a copy of

the reference to methods?

e Cannot “lose” a reference inside a method.

16
17
18

O 0 N O

public static void tryBreakReference(List<String> words) {
words = new LinkedlList<>(); Even though this reassigns
} words in the method..

List<String> words = new LinkedList<>();
words .add("CS");
tryBreakReference(words);
System.out.println(words);

Still prints [‘CS”], only the

copy of the reference was
reassigned.

2/14/2024 CompSci 201, Spring 2024, LinkedList 12

Null reference/pointer

 The default value for an uninitialized (no
memory allocated by a call to new) object is
null.

» Can check if an object == null.

« We will use to denote the end of a linked list, the node
with no more nodes following.

* |t you try to call any methods on a null object,
will get a NullPointerException error.

Linked list is a list implemented by
inked nodes. What is a node?

 Just a Java object of a class we write, like any
other!

« We want to “link” them together, so each node has a
pointer (really a reference = a memory location) to
another nodeé.

public class ListNode ({ ListNode first = new ListNode(5);
int info; ListNode second = new ListNode(3);
ListNode next; first.next = second;
ListNode(int x){
HABREE 2T info=5; . .
} e . info = 3;
i 1 i IICAL — 11Ull, .
LlstI:Iode(J.nt x, ListNode node){ : next = ﬂU”,
info = x; next = x012;
next = node;
} Address x001 Address x012

2/14/2024 CompSci 201, Spring 2024, LinkedList 14

Creating and traversing a linked
list

 ListNode class used in APTs, etc.

* The variable for the “linked list itself” is just a

reference to the first ListNode

ListNode 1list = new ListNode(5);
list.next = new ListNode(7);

main:39 Node Node Node list.next.next = new ListNode(9);
info | 7T info |9

st | o~ —>_1"0|5 rint(list);
next / next / next | null !.J . ()r f—

)) public static void printList(ListNode 1list) {
While there is a while(list != null) {
next node... System.out.println(list.info);

list = list.next;

Print value of
current node

Go to next
node

2/19/24 ormpSci 201, Spring 2024, Linked List - Pointers 15

Creating Nodes, constructing lists

1. Calling new Node(..) always creates a Node
iINn memory that did not exist before

2. Writing node.next = otherNode; makes
node = (point to) otherNode

3. node.next or node.info gives an error (null
pointer exception) if node is null

2

This and following questions reference the ListNode
class shown. Suppose we run the following code:

ListNode myList =new ListNode(2, new ListNode(0,
new ListNode(1)));

. . . 1 public class ListNode {
What is myList.next.next? A 5 Sk 1k

(:) 0 3 ListNode next;

4 public ListNode(int info) {

5 this.info = info;
O The second ListNode object 6 1

7 public ListNode(int info, ListNode next) {
O 1 8 this.info = info;

9 this.next = next;
@The third ListNode object 10 }

11 1

() nul

2/14/2024 CompSci 201, Spring 2024, LinkedList 18

3

Again suppose we run the following code.
ListNode myList =new ListNode(2, new ListNode(0, new ListNode(1)));

What is myList.nextinfo? * [1}

1 public class ListNode {
2 int info;
3 ListNode next;
GQ(b 4 public ListNode(int info) {
5 this.info = info;
6 }
C> The second ListNode object 7 public ListNode(int info, ListNode next) {
8 this.info = info;
O 1 9 this.next = next;
10 }
() The third ListNode object 11 1

O null

2/14/2024 CompSci 201, Spring 2024, LinkedList 19

4

Again suppose we run the following code.
ListNode myList =new ListNode(2, new ListNode(0, new ListNode(1)));

What is myList.next.next.next? *

1 public class ListNode {

2 int info;

3 ListNode next;
O 1 4 public ListNode(int info) {

5 this.info = info;
() The third ListNode object 6 }

7 public ListNode(int info, ListNode next) {
& nul 8 this.info = info;

9 this.next = next;

10 }
O error, null pointer exception 11 1

myList.next.next.next.next causes a
NullPointerException

2/14/2024 CompSci 201, Spring 2024, LinkedList 20

5

Consider the following code. assume the printList method prints the values in a list (meaning
everything from a given starting ListNode and following next references until reaching null).
What would be printed by line 18, which prints ret? * [1}

9 public static ListNode foo(ListNode list) {
10 list = list.next;
11 list.next = null;
12 return list;
13 }
14
Run | Debug
15 public static void main(String[] args) {
16 ListNode list = new ListNode(info: 2, new ListNode(info: @, new ListNode(info: 1)));
17 ListNode ret = foo(list);
18 printList(ret);
19 printList(list);
20 }

() nothing
Vo
)20
(D200

2/14/2024 CompSci 201, Spring 2024, LinkedList 21

Same code. What would be printed by line 19, which prints list? * [T}

9 public static ListNode foo(ListNode list) {
10 list = list.next;
11 list.next = null;
12 return list;
13 }
14
Run | Debug
15 public static void main(String[] args) {
16 ListNode list = new ListNode(info: 2, new ListNode(info: @, new ListNode(info: 1)));
17 ListNode ret = foo(list);
18 printList(ret);
19 printList(list);
20 }

() nothing
Oo
V20
O 2,01

2/14/2024 CompSci 201, Spring 2024, LinkedList 22

10
11
12
13
14

15
16
17
18
19
20

WOTO Answers

What would line 18 print? O
What would line 19 print? 2, 0

public static ListNode foo(ListNode list) {

list = list.next;
list.next = null;
return list;

}

Run | Debug

list
(foo)

public static void main(String[] args) {

ListNode list = new ListNode(info: 2, new Li
ListNode ret = foo(list);

printList(ret);
printList(list);
}
2/19/24

list

(main)

CompSci 201, Spring 2024, Linked List - Pointers

ret
(main)

Node(info: @, new ListNode(info: 1)));

23

DIYLinkedList

Live COdIﬂg %
{ >}

	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Today’s Outline
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Linked List, Low-level DIY perspective
	Slide 8: Contrasting how things look to your computer / in memory
	Slide 9: Memory and references
	Slide 10: Multiple objects or multiple references
	Slide 11: Pass by value of reference
	Slide 12: More Pass by value of reference
	Slide 13: Null reference/pointer
	Slide 14: Linked list is a list implemented by linked nodes. What is a node?
	Slide 15: Creating and traversing a linked list
	Slide 16: Creating Nodes, constructing lists
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: WOTO Answers
	Slide 24: DIYLinkedList

