L17: Linked List and
Pointer Problems

Alex Steiger
CompSci 201: Spring 2024
2/19/2024

Logistics, Coming up

« Monday, 2/19 (today)
« Project 2: Markov Due
« Project 3: DNA out by tomorrow

» Thursday, 2/22
* APT Quiz 1 due

* Next Monday 2/26
« Nothing due ©
« Work on Project 3: DNA, due the following week

Today’'s Outline

« Part 1: LinkedList review + low-level details
* Part 2: Implementing DIYLinkedList

« Part 3 / Wed: Working directly with List Node
objects, algorithmic problem-solving
1. Get to index'th node
2. Append one list to another
3. Reverse alistin place

3/15/2024

What is the runtime complexity of the reverseCopy method as a function of n where n is the

size of mylist? * [

22

23
24
25
26
27
28
29

3

public static List<Integer> reverseCopy(LinkedList<Integer> myList) {
List<Integer> reversed = new LinkedListo();
for (Integer val : mylist) {
// adds val to front of list
reversed.add(@, val);

}
return reversed;
}
o[t}
Ofn)
Oin*2)
O(n*3)

) mps Spring inked

What is the runtime complexity of the removeZeros method be as a function of n, the number
of elements in the list? Answer in the worst case / without making any assumptions about the

elements of the input myList. * [T}

8 public static void removeZeros(LinkedList<Integer> mylList) {
9 for (int i=0; iamylist.sizeQ); i++) {
10 if (myList.get(i) == 0) {
1 myList.remove(i);
12 }
13 1
oM

ol

\/owz:

0(n"3)

) mpSci Spring

4

What is the runtime complexity of the removeZeros method be as a function of n, the number
of elements in the list? Answer in the worst case / without making any assumptions about the

elements of the input myList

The Java APl documentation clarifies that the remove() method on an Iterator “Removes from

the underlying collection the last element returned by this iterator.” * [T}
6 public static void removeZeros(LinkedlList<Integer> mylist) {
Iterator<Integer> listIter = myList.iterator();
8 while (listIter.hasNext()) {
9 if (listIter.next() == @) {
10 LlistIter.remove();
11 }
12 }
13 1
om

) omps Spring inked!

3/15/2024

3/15/2024

Linked List, Low-level
DIY perspective

Contrasting how things look to
your computer / in memory

Array/ArrayList LinkedList
Elements laid out sequentially, one at Elements at arbitrary locations in
a time, in order, in memory. memory, connected only by
myArray references to the next element.

myLinkedList
5 (11 |6 |7 / 17

Bl

T
6]

Memory and references

« In Java, variables for reference types (anything
that is an object/not a primitive) really store the
location of the object in memory.

« Can have multiple references to the same object

=

in memory!
6 List<String> words = new LinkedList<();
7 words.add("CS"); Prints ['CS", “201"],
8 List<String> otherWords = words; only one actual
9 otherWords.add("201"); words Listin memory!
(] System.out.pr1nlln(w0Piizi__,—_—————
otherWords s 201

10

11

12

Multiple objects or multiple
references

Java creates a reference type object in memory
only when the code calls the new operator.

11 List<String> 1istA = new Linkedlist<>(};
12 List<String> listB = new LinkedlList<(D;
First example create 2 distinct empty lists, but...
11 List<String> listA = new LinkedlList<>();

1z List<String> listB = listA;

Second example creates one list in memory with
two references / variable names.

Pass by value of reference

12 public static void removeFront(List<String> words) {
13 words . remove(@);
14 1

» Java does NOT copy all of words when we call this
method.

- Copies the reference (memory address) and passes
that, O(1) time [memory addresses are 64 bits].

« Changes relevant outside of method.

6 List<String> words = new LinkedlList<>();

7 words.add("C5"); Prints [] (empty), change to
8 removeFront(words); words in method changes
9 System.out.println(words); the only List in memory.

Different for primitive types.

mpSci 201, Spring inkedList

More Pass by value of reference

» Why does it matter that Java passes a copy of
the reference to methods?

« Cannot "lose” a reference inside a method.

16 public static void tryBreakReference(List<String> words) {

17 words = new LinkedlList<(); Even though this reassigns
8} words in the method

List<String> words = new LinkedlList<();
words.add("C5");

tryBreakReference(words);
System.out.println(words);

Still prints [‘CS”], only the
copy of the reference was
reassigned.

3/15/2024

13

14

15

Null reference/pointer

* The default value for an uninitialized (no
memory allocated by a call to new) object is
null.

« Can check if an object == null.

« We will use to denote the end of a linked list, the node
with no more nodes following.

« If you try to call any methods on a null object,
will get a NullPointerException error.

Linked list is a list implemented by

linked nodes. What is a node?

« Just a Java object of a class we write, like any
other!

* We want to “link” them together, so each node has a
pointer (really a reference = a memory location) to
anothernodé.

public class ListNode { ListNode first = new ListNode(5);

int info; ListNode second = new ListNode(3);
ListNode next; first.next = second;
ListNode(int x){
info = x; i)
} . o nod T?, ,5;,‘.|. info=3;
ListNode(int x, ListNode node){ [ATSNEEI - b
info = x; next = x012; mapd = ol
next = node;
} Address x@01 Address x@12
}
m ing inkedList
Creating and traversing a linked
list

* ListNode class used in APTs, etc.

* The variable for the “linked list itself” is just a
reference to the first ListNode
ListNode list = new ListNode(5);
list.next = new ListNode(7);
aainiag Node Hoge Hade list.next.next = new ListNode(%);
st [mfr: ,..f - mhl r. . ml.: = - pr‘int(list),‘ o
publie static void printList(ListNode list) {
While there is a while(list 1= null) {
next node... System.out.println(list.info);
list = List.next;
Print value of
current node
Go to next
node : .
- ked L

3/15/2024

3/15/2024

Creating Nodes, constructing lists

1. Calling new Node(...) always creates a Node
in memory that did not exist before

2. Writing node.next = otherNode; makes
node = (point to) otherNode

w

node.next or node. info gives an error (null
pointer exception) if node is null

) my ng fList

16

2

This and following questions reference the ListNode
class shown. Suppose we run the following code:

ListNode myList =new ListNode(2, new ListNode(0,
new ListNode(1)));

: . m 1 public class Listhode {
Whatis mlistnetnet? * @ | 5 int info;
o 3 ListNode next;
= 4 public ListNode(int info) {
: 5 this.info = info;
The second ListNode object
j & '
7 public ListNode(int info, ListNode next) {
1 8 this.info = info;
9 this.next = next;
/The third ListNode object 1@ }
1n 1
null
) mr ing iList
18
3

Again suppose we run the following code.

ListNode myList =new ListNode(2, new ListNode(0, new ListNode(1)));

What is mylistnextinfo? * (4

public class ListNode {
int info;

ListNode next;

public ListNode(int info) {
this.info = info;

Vo

() The second ListNode object

public ListNode(int info, ListNode next) {
this.info = info;

O this.next = next;

1
z
3
4
5
6]
7
8
9
U]
S

() The third ListNode object 3

O it

19

4

Again suppose we run the following code.

ListNode myList =new ListNode(2, new ListNode(0, new ListNode(1)));

What is myListnextnextnext? *

1

2

- 3

Q 4

5

(C) The third ListNode object [

7

null 8

9

10
() error, null pointer exception 13

myList.next.next.next.next causes a
NullPointerException

) mps

20

5

Consider the following code. assume the printList method prints the values in a list (meaning
everything from a given starting ListNode and following next references until reaching null)

public class ListNode {

int info;
ListNode next;

public ListNode(int info) {

this.info = info;

}

public ListNode(int info, ListNede next) {

this.info = info;
this.next = next;

What would be printed by line 18, which prints ret? * [T}

9 public static ListNode foo(l de list)
list = list.next;
list.next = null;
return list;

15 public static void main(String[] args)

ListNode ret = foo(list);
printList(ret);

printList(list);

21

e list = new ListNode(info: 2, new ListNode(info: 0, new ListNode(info: 1)));

Same code. What would be printed by line 19, which prints list? * [T}

9 public static Listhode foof
10 list = list.next;
1 List.next = null;
12 return list;
13
14
15 public static void main(String[] args)
16 L
17 thode ret = foo(list);
18 printlist(ret);
19 printlist(list);
20
~) nothing
o
{ o
201

) mps

22

de list) {

{

de List = new ListNode(info: 2, new ListNodeCinfo: @, new ListNodeCinfo: 1)));

3/15/2024

9
19
11
12
13
14

15
16

18
19
28

23

24

WOTO Answers

What would line 18 print? 0
What would line 19 print? 2, 0

public static ListMode foo(ListNode list) {
list = List.next;
list.next = null; .
return list; list

} (foo)

public static void main(String(] args) {
ListNode list = new ListNode(info: 2, new LiskNode(info: B, new ListNodeCinfo: 13));
ListNode ret = foo(list);
printlist(ret);
printList(list);

¥ list

(main)

DIYLinkedList

Live Coding %
()

3/15/2024

	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Today’s Outline
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Linked List, Low-level DIY perspective
	Slide 8: Contrasting how things look to your computer / in memory
	Slide 9: Memory and references
	Slide 10: Multiple objects or multiple references
	Slide 11: Pass by value of reference
	Slide 12: More Pass by value of reference
	Slide 13: Null reference/pointer
	Slide 14: Linked list is a list implemented by linked nodes. What is a node?
	Slide 15: Creating and traversing a linked list
	Slide 16: Creating Nodes, constructing lists
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: WOTO Answers
	Slide 24: DIYLinkedList

