| 13: Recursion

Alex Steiger
CompSci 207: Spring 2024
2/26/2024

Parson in CS: Ellen Ochoa

« BS physics (75), PhD Elec. Eng. ('85)

» Starting working on software for
optical recognition systems
(computer vision)

» Applied to be an astronaut in...
« '85..rejected
« '87..rejected
« '00...accepted!!!

« Worked on flight software, computer @
nardware, and robotics

* First Hispanic woman in space 93

 Director of NASA Johnson Space
~light Center (Houston) 13

2/26/2024 CompSci 201, Spring 2024, Recursion 2

Announcements, Coming up

» Today, Monday 2/26
« Nothing due

» Wednesday 2/28
« APT 5 (linked list problems) due

* Next Monday 3/4
* Project P3: DNA (linked list project) due

Today's outline

* Introducing Recursion
« Counting ListNodes
« Reversing a LinkedList

» Live Coding w/ Recursion
* (Time permitting)

oward Recursion by counting

nodes: lterative vs. Recursive

» Standard linked list iteration
» Advance local pointer, do something at each node

public int countIter(ListNode list) {
int total = 0;
while (list != null) A

total += 1;
list = list.next;
}
) return total,
e Recursion? }
» Base Case?
e General case? public int size(ListNode list) {

e Definesizein

if (list == null) return 0;
return 1 + size(list.next);

terms of size? }

2/26/2024

CompsSci 201, Spring 2024, Recursion

Key ideas in recursion

1. Base case: Solve for answer when instance is
“‘small”

7. (General case:

1. Get answer on smaller instance(s) of the same
problem using recursive call(s)

2. Do something with the result of the recursive
call(s) and then return

* Note: Methods/calls stacked, like all methods

Thinking recursively

1. Whenis the input small enough that
the answer is trivial? Base case.

2. Otherwise, suppose a magical fairy
(the Recursion Fairy!) could solve the
exact same problem on a smaller input

3. Could you solve the larger problem
given what the fairy told you?

2/26/2024 CompSci 201, Spring 2024, Recursion 7

he call stack: How recursion
works on a machine

» Fach method call gets

. Call Stack Objects
|tS O\Nn Ca” frame . ListNode ListNode ListNode
(local variables, etc.) E oli_ . 2 iwhls_
l.ist
 Eager evaluation:
Invoking method does ...
not resume until

. I public int size(ListNode 1list) A{
IﬂVOked methOd st Il if (list == null) return 0;

return 1 + size(list.next);
returns. ,

Fager evaluation and substitution

e Return value will

. . Call Stack Objects
be S U bSt |tUted | nto TESmad) ListNode ListNode ListNode
the expression e e b
calling the -
list
method.
list

list
—— public int size(ListNode list) {
if (list == null) return 0;
return 1 + size(list.next);

list [null

}

2/26/2024 CompSci 201, Spring 2024, Recursion 9

Fager evaluation and substitution

e Return value will

. . Call Stack Objects
be SUbStltUted IntO TESmed) ListNode ListNode ListNode
I ict info |1 info|2 info |3
the expreSS|On ' | next / next next | null
calling the
list
methOd. size:9
list
size:s public int size(ListNode list) {
st [if (list == null) return 0;
return 1 + (D
}

2/26/2024 CompSci 201, Spring 2024, Recursion 10

Fager evaluation and substitution

e Return value will

. . Call Stack Objects

be SUbStltUted |ntO ma-in;4t Listl\lllodet ListNode ListNode
the expreSSIOn list info |1 info 2/ info |3 “
calling the

list

rTWEEtf]()Cj. size:8 public int size(ListNode list) {

list e if (list == null) return 0;

}

2/26/2024 CompSci 201, Spring 2024, Recursion 11

Fager evaluation and substitution

e Return value will
be substituted into
. T info |1 info | 2 info |3
the.expressmn B / et vec ot
Ca”Iﬂg the e public int size(ListNode list) {

list

methOd if (list == null) return 0;
| return 1 + (EEENEID
}

Call Stack Objects

ListNode ListNode ListNode

2/26/2024 CompSci 201, Spring 2024, Recursion 12

Counting Nodes

4

d
'

public int size(ListNode list) { .-~

if (list null) return 0;
return 1 + size(list.next);

}

= size (ptr); T

-

int result
System.out.println(result);

-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

int size(Node list) |}

return O;

2/26/2024

-
-

. N
int size(Node list)
if (list == null) return O;
return 1 + size(list.next))

int size(Node list)
if (list

null) return O;

(\
int size(Node list)

if (list == null) return O;

\return 1 + size(list.next)

- N

-

int size (Node list)
if (list == null) return O;

turn 1 + size(list next)

CompsSci 201, Spring 2024, Recursion

13

Recursive runtime

o Concept IS ’[he same: public int size(ListNode 1list) {
' if (list == null) return 0;

Count the .number of return 1 + size(list.next);

constant time }

operations...across all « Moves one node toward

recursive calls! the base case at each
step.

. » List of N nodes, makes
 Ensure each recursive O(N) total recursive calls,

call gets closer to the each takes O(1) time
base case, else code « Overall O(N) runtime
may run forever, complexity.

Recall the reverse problem

« How do we reverse nodes in a linked list
e Go from A->B->C to C->B->A
* Typical interview style question

* https://leetcode.com/problems/reverse-
inked-list/

 https://www.hackerrank.com/challenges/rev
erse-a-linked-list

2/26/2024 CompSci 201, Spring 2024, Recursion 15

https://leetcode.com/problems/reverse-linked-list/
https://leetcode.com/problems/reverse-linked-list/
https://www.hackerrank.com/challenges/reverse-a-linked-list
https://www.hackerrank.com/challenges/reverse-a-linked-list

Base case, words and code

» Base case: When is there nothing to do?
« Alist with O or T nodes is its own reverse

public static ListNode reverse(ListNode 1list) {
1f (list == null || list.next == null) {
return 1list;

S Ul W

}

2/26/2024 CompSci 201, Spring 2024, Recursion

16

Recursive step in words

« Suppose the Recursion Fairy (a recursive call)
reverses the list after the first node.

« How to use? Just put the first node at the end!

e Restated: The reverse of a list is the reverse of
all but the first element, with the first element
added to the end.

Recursive step In pictures

list—>A | ——>|B | ——>|C ——>H|

Returned by recursive
callon 1list.next

Make reversedLast
point to what 1ist points

1o
list——> A C ——>| B -—————)‘“
reversedFirst reversedLast

Return reversedFirst

2/26/2024 CompSci 201, Spring 2024, Recursion 18

Recursive step in code

list——>A | ———>|B | ———>|C ——————>“

14 ListNode reversedLast = list.next;

8 ListNode reversedFirst = reverse(list.next);

list—>A C| —T—>B|*" ’HI
reversedFirst reversedLast

Note that 1ist.next still refers to reversedLast

2/26/2024 CompSci 201, Spring 2024, Recursion

19

Recursive step in code (continued)

list—> A C| —T—>B|F >‘ ‘I
reversedFirst reversedLast
9 reversedLast.next = list; Make B point to A
10 list.next = null; Make A point to null
11 return reversedFirst; Return overall reversed list
c| ——B| ——a ——)‘ ‘ |
reversedFirst reversedLast list

2/26/2024 CompSci 201, Spring 2024, Recursion 20

Putting it all together

3 public static ListNode reverse(ListNode list) {

4 1f (1ist == null || 1ist.next == null) {

5 return list;
6 by

7 ListNode reversedLast = list.next;

8 ListNode reversedFirst = reverse(list.next) ; BaENIEE
9 reversedLast.next = list;

10 list.next = null;
11 return reversedFirst;
12 }

2/26/2024 CompSci 201, Spring 2024, Recursion 21

Revisiting the call stack: How it

-

_

~

really works

reverse (list)

J

-

_

N
reverse (list)—

J

-

_

N
reverse (list)]

J

Revisiting the call stack: How it

-

_

~

really works

reverse (list)

J

-

_

N
reverse (list)—
reversedFirst—

J

Revisiting the call stack: How it
really works

|

W —>{ A C| ———|B | —

reverse (list) J

Back to the case we considered first

Consider the rec method. If the input listis [A', 'B, 'C'], what will be
returned by rec(list)?

O o NO U1 & W

10
11
12
13

2/26/2024

public static ListNode rec(ListNode list) {

1f (list == null |l list.next == null) {
return list;

¥

ListNode after = rec(list.next);
if (list.info <= after.info) {
List.next = after;
return list;

¥

return after;

Answer: [A’,'B’,'C]

CompSci 201, Spring 2024, Recursion

26

If the input listis [C', 'B, 'A], what will be returned by rec(list)?

O o NO U1 & W

10
11
12
13

2/26/2024

public static ListNode rec(ListNode list) {

1f (list == null || list.next == null) {
return list;

¥

ListNode after = rec(list.next);
if (list.info <= after.info) {
list.next = after;
return list;

¥

return after;

Answer: ['A]

CompSci 201, Spring 2024, Recursion 27

For an input list with N nodes, the best characterization of the
runtime complexity of rec(list) is...

3 public static ListNode rec(ListNode list) {
4 if (list == null |l list.next == null) {
5 return list;

6 }

7 ListNode after = rec(list.next);

8 if (list.info <= after.info) {

9 list.next = after;

10 return list;

11 }

12 return after;

13 }

Answer: O(N)

2/26/2024 CompSci 201, Spring 2024, Recursion 28

Consider the mystery method. Note that it is the same as rec except for lines
24-29. If the input list is [C', 'B', 'A], what will be returned by mystery(list)?

15 public static ListNode mystery(ListNode list) {

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31 }

2/26/2024

1f (list == null |l list.next == null) {
return list;

}

ListNode after = mystery(list.next);

if (list.info <= after.info) {
list.next = after;
return list;

}

ListNode current = after;

while (current.next != null && list.info > current.next.info) {
current = current.next;

}

list.next = current.next;

current.next = list;

return after;

Answer: [A’,'B’,‘'C]

CompSci 201, Spring 2024, Recursion 29

Same mystery method. For an input list with N nodes, the best
characterization of the runtime complexity of mystery(list) is...

15 public static ListNode mystery(ListNode list) {

16 1f (list == null || list.next == null) {
17 return list;

18 }

19 ListNode after = mystery(list.next);

20 if (list.info <= after.info) {

21 list.next = after;

22 return list;

23 }

24 ListNode current = after;

25 while (current.next != null && list.info > current.next.info) {
26 current = current.next;

27 }

28 list.next = current.next;

29 current.next = list;

30 return after;

31 }

Answer: O(N*2)

2/26/2024 CompSci 201, Spring 2024, Recursion 30

	Slide 1
	Slide 2: Person in CS: Ellen Ochoa
	Slide 3: Announcements, Coming up
	Slide 4: Today’s outline
	Slide 5: Toward Recursion by counting nodes: Iterative vs. Recursive
	Slide 6: Key ideas in recursion
	Slide 7: Thinking recursively
	Slide 8: The call stack: How recursion works on a machine
	Slide 9: Eager evaluation and substitution
	Slide 10: Eager evaluation and substitution
	Slide 11: Eager evaluation and substitution
	Slide 12: Eager evaluation and substitution
	Slide 13: Counting Nodes
	Slide 14: Recursive runtime
	Slide 15: Recall the reverse problem
	Slide 16: Base case, words and code
	Slide 17: Recursive step in words
	Slide 18: Recursive step in pictures
	Slide 19: Recursive step in code
	Slide 20: Recursive step in code (continued)
	Slide 21: Putting it all together
	Slide 22: Revisiting the call stack: How it really works
	Slide 23: Revisiting the call stack: How it really works
	Slide 24: Revisiting the call stack: How it really works
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

