L14: Sorting

Alex Steiger
CompSci 201: Spring 2024
2/28/2024: LEAP DAY EVE

Announcements, Coming up

* Today, Wednesday 2/28
« APT 5 (linked list problems) due

* Next Monday 3/4
« Project P3: DNA (linked list project) due

* Next Wednesday 3/6
« APT 6 (sorting problems) due

* Then...Spring Break!

Today's outline

1. Announce Midsemester Survey
1. Invaluable for staff, especially UTAs = for you!
2. Look for Canvas announcement from Violet

2. Sorting in Java: Comparing objects with
Comparable and Comparator

3. Efficient sorting algorithms
1. Insertion sort
2. Recursive Mergesort

2/28/2024

Sorting in Java:
Comparable,
Comparator

Sorting w/ Java.util: Put elements of
Array/List in non-decreasing order

* Arrays.sort / Collections.sort are void — they sort
the array/list passed as an argument.

« Default order is non-decreasing (least to
greatest).

67 int[] elements = {5, 3, 9, 2, 4, 1};
68 Arrays.sort(elements);
69 System.out.println(Arrays.toString(elements));

* Prints [1, 2,3, 4,5, 9]

Java API Sort Algorithms

* Collections.sort (fora List)
* Arrays.sort (for an Array)

« Both O(N log(N)), nearly linear runtime
complexity.

« Sorts in-place, mutates the input rather than
return a new List/Array.

« Stable, does not reorder elements if not needed
(e.g., if two elements are equal).

2/28/2024

What can be compared and sorted
in Java?

* Objects of a Class that implements Comparable
interface. Has a naturalOrder.

* Requires implementing a . compareTo() method
Should returnan int: (e

t
String first;]
String last;

* <0if this comes public Person(Steing s) {...}

public String getiest() { return last; }

before the parameter. fieic string getrirst) retur first; }
S d

« Qif this and the
parameter are equal.

+ >0if this comes
after the parameter.

able<Person>) {

ss Person implemen

"+ last; }

Strings are Comparable

» What is the equivalent of < for Strings?

* Use the compareTo method for the natural
lexicographic (dictionary/sorted) ordering.

Jjshell> "a".compareTo("b"); Negative for “less than”
$30 => -1

ssbells " comaretoC's”y; (TR
$31 = 0@

jshell> "b".compareTo("a"); _(Fapamyeeyroncy
$32 => 1

Lexicographic, check first
character, second if equal, third if
still equal, ...

jshell> "az".compareTo("cb");
$37 = -2

Sorting Comparable objects by
naturalOrder

[sloth, house, owl, ant, mice, kelp]

String[] a = {"sloth", "house", "owl", "ant", "mice", "kelp"};
System.out.println(Arrays.toString(a));

String[] copy = Arrays.copyOf(a, a.length);
Arrays.sort(copy);
System.out.println(Arrays.toString(copy));

[ant, house, kelp, mice, owl, sloth]
* naturalOrder for Strings is lexicographic
(alphabetical or dictionary order)

2/28/2024

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Comparable.html

Comparable for other classes?

All Blob comparing code available here

+ Can implement Comparable interface when
defining your own class.

3
4
5
6

* Must implement a compareTo method

14
15
16
17

10

4

public class Blob implements Comparable<Blobs> {
String name;
String color;
int size;

Compares
blobs by their
names

@0verride
public int compareTo(Blob other) {
return this.name.compareTo(other.name);

}

Sorting Comparable Objects
Running code in a main method...

'] System.out.println(myBlobs);

Original: [(bo, blue, 4), (al, red, 2), (cj, green, 1), (di, red, 4)]

42 Collections.sort(myBlobs);
43 System.out.println(myBlobs);

S

11

12

orted: [(al, red, 2), (bo, blue, 4), (cj, green, 1), (di, red, 4)]

« Formal guarantee: Element el will come before
e2 (after sorting) if e1l. compareTo(e2) < o.

Defining a Comparator

* What if...
» The class doesn't implement Comparable?

« Or you want to sort a different way?

» Create a helper class that implements the

Comparator interface.
* One method: compare: indicates how to compare

two objects

* Then pass a Comparator object to your call to
sort.

2/28/2024

https://coursework.cs.duke.edu/cs-201-spring-24/comparing

13

14

15

Defining a Comparator<Blob>

1 import java.util.Comparator;

Separate class:
* implements Comparator<TypeToCompare>,
« and implements a single method compare

8 public class BlobComparator implements Comparator<Blob> {
9 @0verride

10 public int compare(Blob a, Blob b) {MEIEWAEIEEERS oI}

1 int sizeDiff = a.size - b.size;\QUEUIHY

12 if (sizeDiff != @) { « <0if acomes beforeb,

13 return (-1) * sizeDiff; « >0if acomes afterb,

14 } + 0if equalin order
15 return a.compareTo(b); Flipping the sign reverses
16 1 the comparison, large to

17 1 small

Sorting with a Comparator

« Running code in a main method...
40 System.out.println(myBlobs);
Original: [(bo, blue, 4), (al, red, 2), (cj, green, 1), (di, red, 4)]

Create a BlobComparator object,

pass it to the sort.

48 Collections.sort(myBlobs, new BlobComparator());
49 System.,out,printf(format: "¥s\n\n", myBlobs);

Sorted: [(bo, blue, 4), (di, red, 4), (al, red, 2), (cj, green, 1)]

« Element el will come before e2 (after sorting) if
compare(el, e2) < O.

Private Inner Comparator

+ Can define a Comparator class as a private
inner class if only used inside the class.

* Useful for APTs, here is an example:

SimpleSort APT

2/28/2024

Problem Statement

G
ey of strings, wile he mefhee] Feooan e thl etuens. i
AThy of the shae srings, but Borsed by eageh with the: shonest
rings first and the loagest serigs 15t In the retumod armay.
ou can creste & new ARy of st the BITEY PATACICY valoe,
but you st returm & e sreay containing the same sirings
thin e in voLuea,

i the returmed ey, strings that are the same length shou be.
suria in abgbabetical oler, See the exenpies for dessls

Private Inner Comparator

« Can define a Comparator class as a private
inner class if only used inside the class.

* Useful for APTs, here is an example:

* Given String[] values:
« Sort first in non-decreasing order of length,
« then sort same-length in alphabetical order.

wow o wmap o wo

« [a", "b", “c”, “an”, "be”, "pi", “test’, "quiz’]

16

Template for Solving LengthSort
with a Private Inner Comparator
Can see this code here

1 import java.util.Arrays;

2 import java.util.Comparator;

3

4 public class LengthSort {

s private class LengthSortComp implements Comparator<String> {
6 @0verride

7 public int compare(String a, String b) {

8 // Need to modify this to solve the problem

9 return a.compareTo(b);

18

11
12

3 public String[] rearrange(String[] values){
14 Arrays . sort(values, new LengthSortComp());
15 return values;
16

17}

17

Comparable vs. Comparator

* Comparable a:use a.compareTo(b)
« What is method signature? One parameter
» Method in class of which object a is an instance
* aisthis, b is a parameter
* Comparator ¢, use c.compare(a,b)
* Method has two parameters
« Part of Comparator (Java API link)
* Both return an int:
» <0 (means a comes before b)
« ==0 (means a equals b)
» >0 (means a comes after b)

18

2/28/2024

https://www2.cs.duke.edu/csed/newapt/lengthsort.html
https://coursework.cs.duke.edu/cs-201-spring-24/comparing/-/blob/main/LengthSort.java
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Comparator.html

19

20

21

Runtime Complexity of Sort and
Comparator?

* Arrays.sort, Collections.sort, call either
compareTo (default) or compare (if you give a
Comparator)...

* O(N log(N)) compareTo/compares, on an
Array/List of N elements.

« Exists theoretical proof that this many
comparisons is hecessary for any comparison-
based sorting.

When is comparing once not
constant time?

public class ListComp implements Comparator<lList<Integers>> {
@)verride
public int compare(lList<Integer> listl, List<Integer> list2) {
int minLength = Math.min(listl.size(), listZ2.size());
for (int i=0; i<minLength; i++) {
int diff = listl.get(i) - list2.get(i);
if (diff !=0) {
return diff;

Runtime complexity of this
Comparator may depend on the length
of the two Lists being compared

}
}

return @;

3 Overall runtime complexity to sort N
ArrayLists, each with M elements, is O(MN
Iog(N)S) in the worst case with this Comparator.

java.util. Comparator: Convenient
Shorthands

» Comparator.naturalOrder and reversed()
ishell> Comparator<String> ¢ = Comparator.naturalOrder()
c© ==> INSTANCE

jshell> c.compare(*a®,"b") Must be
$12 ==> -1 Comparable

ishell> c.reversed().compare("a",
513 ==> 1

* Comparator.comparing

jshell> Comparator<String> ¢ = Comparator.comparing(String::length)
¢ ==> java.util.Comparator§$Lanbda$27/0xP0AA0R0BAGLITCARA2bTFcTe

jshell> c.comparel"this*, “is*)

$15 ==> 1 —
Syntax is: <Type>: :<method name> to sort

jshell> c.compare("is", "it") something of the Type by the result of some
$16 ==> 8 getter method that returns something
Comparable.

2/28/2024

Comparator-generating
shorthands

[sloth, house, owl, ant, mice, kelp]

copy = Arrays.copyOf(a, a.length);
Arrays.sort(copy, Comparator.comparing(String::length));
System.out.println(Arrays.toString(copy));

[owl, ant, mice, kelp, sloth, house]

» Why does "owl" come before "ant"?
« Stable sort respects order of equal keys

22

Using .thenComparing shorthand

[sloth, house, owl, ant, mice, kelp]

Arrays.sort(copy, Comparator.
comparing(String: :length).
thenComparing(Comparator.naturalOrder()));

[ant, owl, kelp, mice, house, sloth]

* First compare by length
« if same? Compare naturally

23

Comparator with “lambdas”

« Can also define a comparator with a ‘lambda
expression.”

Integer[] nums ={2, 0, 1};
Comparator<integer> comp = (a, b) -> (b-a);

Givenan a

comp.compare(a,b)
should return this
expression

Type we
want to
compare

and a b of
that type...

Arrays.sort(nums, comp); numsisnow {2,1,0}

24

2/28/2024

26

27

28

What is printed by the following line of code?

System.out.println("duke".compareTo("devils"));

- true
- false
- an integer less than 0
-0
v~ an integer greater than 0

After sorting, ar will be...

String[] ar = {"bird", "dog", "cat", "snake"};
Comparator<String> comp = Comparator.comparing(String::length);
Arrays.sort(ar, comp);

Ans: [dog, cat, bird, snake]

Suppose you have the following list of lists of integers:

[[2,0,1],[1,0, 1], [1, 6]]. After sorting, the list would be ordered as...

public class ListComp implements Comparator<List<Integer>> {
@0verride
public int compare(List<Integer> listl, List<Integer> list2) {
int minLength = Math.min(listl.size(), list2.size());
for (int i=0; i<minLength; i++) {
int diff = listl.get(i) - list2.get(i);

if (diff !=0) {
return diff;
}
}
return 0; Ans: [[1. 0, 1]. [1. 6]. [2, 0, 1]]

2/28/2024

2/28/2024

Suppose you have an ArrayList myLists of N ArrayLists, each
of size at most M. The worst-case runtime complexity to
compare any two elements of myLists would be....

4 public class ListComp implements Comparator<List<Integer>> {
5 @0verride

6 public int compare(List<Integer> listl, List<Integer> list2) {

7 int minLength = Math.min(listl.size(), list2.size());

8 for (int i=0; i<minLength; i++) {

9 int diff = listl.get(i) - list2.get(i);

10 if (diff != @) {

11 return diff;

12 }

13 }

14 return 0; Ans: O(M)

15 }

16}

i i

29

Given an Array of N Strings, each of length at most M, the
worst case runtime complexity to sort the Array with
java.util. Arrays.sort is..

Ans: O(M N log N)

30
Efficient sorting
algorithms
See example implementations here
31

10

https://coursework.cs.duke.edu/cs-201-spring-24/sorting

32

33

34

Selection Sort with a Loop Invariant

« Loop invariant: On iteration i, the first i
elements are the smallest i elements in
sorted order.

« On iteration i...
« Find the smallest element from index i onward

« (By loop invariant, must be the next smallest
element,

« Swap that with the element at index i

« Algorithm is called Selection Sort.

2/28/2024

~NO PR aWOOONO®

By Joestapes9, CC BY-SA 30,

. g ios/icommons v

Selection Sort Code and Runtime

3 public static void selectSort(int[] ar) {
4 for (int i=0; i<ar.length; i++) {
5 int minDex = 1i;
6 for (int j=i+l; j<ar.length; j++) {
7 if Car[j] < ar[minDex]) {
8 minDex = j;
9 }
10 }
11 int temp = ar[i];
12 ar[i] = ar[minDex]; Nested O(N)
13 ar[minDex] = temp; loops, overall
14 3 2
15}
Mergesort
High level idea:
* Base case: size 1

* Return list

* Recursive case:
« Mergesort(first half)
» Mergesort(second

| /\

fin o Zybook

ndex php?curid=333023

Kimedia, org/w/i
1

~NO PR aWOOONO®

/\

AEEEEE
|

half) |

11

Mergesort
High level idea: EIEE [= =]
* Base case: size 1
* Return list f \
* Recursive case: EIEE

« Mergesort(first half)
» Mergesort(second

/AN A
hal OE @ OE =

* Merge the sorted

hal
. Raet\ijerrsw sorted Elf \ / \El

Helper
method

| spring 2004 song ZyDOOK
35
Mergesort recursive wrapper
* A recursive wrapper method:
« |s the top-level method a user would call,
« Is not itself recursive, but makes the initial call to a
recursive method,
« Allows recursive helper method to have additional
parameters.
30 public static void mergeSort(int[] ar) {
31 mergeHelper(ar, 1: 0, ar.length);
32 }
Want to specify a left and right boundary of
the subarray for each recursive call to sort
1, Spring
36
Mergesort recursive method
« Should sort everything in ar starting at index |
and up to (but not including) index r.
34 public static void mergeHelper(int[] ar, int 1, int r) {
35 int diff = r-1; . o
36 if (diff < 2) { return; }
37 int mid = 1 + diff/2; elements, nothing to do
38 mergeHelper(ar, 1, mid); ; N
39 mergeHelper(ar, mid, r); Recursively sort 1st half
40 mergeCar, 1, mid, r);
41 3} Recursively sort 2nd half
201, Spring 2024, Sorting
37

2/28/2024

12

Merge method concept

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

+ Need to keep track of two indices, indexA and

indexB.
A B
1 3 4 2 5 6
indexA indexB

38

Merge method
* Given two sorted arrays, A and B, want to merge

them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

indexA indexB

39

Merge method
* Given two sorted arrays, A and B, want to merge

them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

indexA indexB

40

2/28/2024

13

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

+ Need to keep track of two indices, indexA and

indexB.
1 2
A \ .
1 3 4 2 5 6
indexA indexB

41

Merge method
* Given two sorted arrays, A and B, want to merge

them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

indexA indexB

42

Merge method
* Given two sorted arrays, A and B, want to merge

them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

indexA indexB

43

2/28/2024

14

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

+ Need to keep track of two indices, indexA and

indexB.
1 2 3
A B
1 3 4 2 5 6
indexA indexB

44

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

1 3 4 2 5 6
* L)
indexA indexB
45
Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

A B
1 3 4 2 5 6
indexA indexB

46

2/28/2024

15

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

+ Need to keep track of two indices, indexA and
indexB.

1 3 4 2 5 6
indexA indexB

47

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

1 A3 4 2 BS 6
* *
indexA indexB
48
Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

+ 2

indexA indexB

49

2/28/2024

16

2/28/2024

Merge method initialization

» Should merge ar[l...mid] and ar[mid...r]

43 public static void merge(int[] ar, int 1, int mid, int r) {
44 int[] sorted = new int[r-1];
45 int sDex=@; int lDex=l; int rDex=mid;

» Need a new array sorted to put the merged
results in, will copy back over ar later.

« Keeping track of 3 indices:
« sDex = where we are in the sorted array
« IDex = where we are in ar[l...mid]
* rDex = where we are in ar[mid...r]

50

Merge method loop

While something left in
ar[l...mid] and ar[mid...r]

46 while (1Dex < mid && rDex < r) {

47 if (ar[1Dex] <= ar[rDex]) {

48 sorted[sDex] = ar[1Dex];

5@ } increment its index.
51 else {

52 sorted[sDex] = ar[rDex];

53 rDex++;

54 }

55 sDex++;

Increment sDex in either case

v
o
—

51

Finishing the merge method

« Will finish with ar[l...mid] or ar[mid...r] first, need
to copy the rest of the other.
» Then need to copy sorted back onto ar([l...r]

57 if (1Dex == mid) { System.arraycopy(ar, rDex, sorted, sDex, r-rDex); }
58 else { System.arraycopy(ar, 1Dex, sorted, sDex, mid-1Dex); }
59 System.arraycopy(sorted, srcPos: @, ar, 1, r-1);

» Code uses the System.arraycopy method:

public static void arraycopy(Object src,
int srcPos,
Object dest,
int destPos,
int length)

Capies an array from the specified source array, beginning at the specified
position, to the specified position of the destination array. A subsequence of

52

17

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#arraycopy(java.lang.Object,int,java.lang.Object,int,int)

Is this any faster? Empirically...

N Selection |Insertion |Merge | Java.util
(thousands) | sort(ms) |sort(ms) | sort(ms) | Arrays.sort (ms)
10k 22 40 2

1
30k 168 334 2 2
90k 1481 967 7 6
270k 13175 14
Looks linear but not quite
O(N log(N)) is nearly linear.
53
Why mergesort is O(Nlog(N)),
intuition
« Halves at each level, C1 G E G e 2]
so just O(log(N)) f »\
levels.
El =]

- If we can do all of the /‘ '\ /‘ '\
merges at each level
in O(N) time? E1[EE F=

/A /A
« Overall O(Nlog(N)). =]]

Zybook

54

Recursion tree

T(N)=N +T(N/2)+ T(N/2)

Depth of the

recursion tree N
Number of recursive
calls before base oy *
(N/f2)*2=N
case
(N/4)*4=N

Total complexity of
each level across all
of the recursive
calls.

T(N) = O(N log N)

Visualization from the Zybook
2004 ompSci 201, Spring 2024, Sorting

55

2/28/2024

18

Recurrence Relations

56

Analyzing Recursive Runtime

Develop a recurrence relation of the form
T(N) = a-T(g(N)) + f(N)

* T(N) - runtime of method with input size N
« ais the number of recursive calls

* g(N) - how much input size decreases on each
recursive call
* f(N) - runtime of non-recursive code on input size N

57

Analyzing Runtime of Recursive
Reverse

3 public static ListNode reverse(ListNode list) {

“ if (list == null || list.next == null) {

5 return list;

6 }

7 ListNode reversedLast = list.next;

8 ListNode reversedFirst = reverse(list.next);

9 reversedlLast.next = HSt:—M
list.next = null;

11 return reversedFirst;

12}

T(N) =T(N —1) + 0(1)

58

2/28/2024

19

Solving Recurrence Relations

Apply
recurrence

TN =TWN-1)+1 again to T(N-1)

=(T(N-2)+1) +1

=T(N-3)+3

Total :

runtime =T()+N AndTa'?‘ia\zin, to
=0M)

case, just O(1

59

Recurrence relations and
expectations in 207

* In general, will not be asked to solve recurrence
relations on exams (for later classes in theory).

* You will be asked to determine the recurrence
relation of a given algorithm/code.

T(n) = T(n/2) + O(1) binary search O(log n)
T(n) = T(n-1) + O(1) sequential search O(n)

T(n) = 2T(n/2) + O(1) tree traversal 0O(n)

T(n) = T(n/2) + O(n) gsort partition find k" O(n)

T(n) = 2T(n/2) + O(n) mergesort, quicksort O(n log n)
T(n) = T(n-1) + O(n) selection or bubble sort 0(n?)

60

Runtime complexity of mergesort?

Let N = r-l, the number of elements to sort

34 public static void mergeHelper(int[] ar, int 1, int r) {
35 int diff = r-1;

36 if (diff < 2) { return; }
37 int mid = 1 + diff/2;
38 mergeHelper(ar, 1, mid);

39 mergeHelper(ar, mid, r);
40 mergeCar, 1, mid, r);
41 1)

61

2/28/2024

20

	Slide 1
	Slide 2: Announcements, Coming up
	Slide 3: Today’s outline
	Slide 4: Sorting in Java: Comparable, Comparator
	Slide 5: Sorting w/ Java.util: Put elements of Array/List in non-decreasing order
	Slide 6: Java API Sort Algorithms
	Slide 7: What can be compared and sorted in Java?
	Slide 8: Strings are Comparable
	Slide 9: Sorting Comparable objects by naturalOrder
	Slide 10: Comparable for other classes?
	Slide 11: Sorting Comparable Objects
	Slide 12: Defining a Comparator
	Slide 13: Defining a Comparator<Blob>
	Slide 14: Sorting with a Comparator
	Slide 15: Private Inner Comparator
	Slide 16: Private Inner Comparator
	Slide 17: Template for Solving LengthSort with a Private Inner Comparator
	Slide 18: Comparable vs. Comparator
	Slide 19: Runtime Complexity of Sort and Comparator?
	Slide 20: When is comparing once not constant time?
	Slide 21: java.util.Comparator: Convenient Shorthands
	Slide 22: Comparator-generating shorthands
	Slide 23: Using .thenComparing shorthand
	Slide 24: Comparator with “lambdas”
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Efficient sorting algorithms
	Slide 32: Selection Sort with a Loop Invariant
	Slide 33: Selection Sort Code and Runtime
	Slide 34: Mergesort
	Slide 35: Mergesort
	Slide 36: Mergesort recursive wrapper
	Slide 37: Mergesort recursive method
	Slide 38: Merge method concept
	Slide 39: Merge method
	Slide 40: Merge method
	Slide 41: Merge method
	Slide 42: Merge method
	Slide 43: Merge method
	Slide 44: Merge method
	Slide 45: Merge method
	Slide 46: Merge method
	Slide 47: Merge method
	Slide 48: Merge method
	Slide 49: Merge method
	Slide 50: Merge method initialization
	Slide 51: Merge method loop
	Slide 52: Finishing the merge method
	Slide 53: Is this any faster? Empirically…
	Slide 54: Why mergesort is O(Nlog(N)), intuition
	Slide 55: Recursion tree
	Slide 56: Recurrence Relations
	Slide 57: Analyzing Recursive Runtime
	Slide 58: Analyzing Runtime of Recursive Reverse
	Slide 59: Solving Recurrence Relations
	Slide 60: Recurrence relations and expectations in 201
	Slide 61: Runtime complexity of mergesort?

