L15: Mergesort &
Binary Search

Alex Steiger
CompSci 201: Spring 2024

3/4/2024

Announcements, Coming up

» Today, Monday 3/4

« Project P3: DNA (linked list project) due
« Project P4: Autocomplete out by tomorrow

* Wednesday 3/6

« APT 6 (sorting problems) due

« Friday 3/8

« Fill out the midsemester course survey
« No discussion, enjoy spring break!

* Wednesday 3/20

» Midterm 2, ~linked list through today

Midsemester Survey

* >70% submitted?

« 1 extra credit pton
Exam 2

* >80% submitted?

« 2 extra credit pts on
Exam 2

* Due Friday, 3/8!

3/5/2024

Completion Goal (8 -> %)
$100

Raised

1512

3/5/2024

Today's Agenda

1. Sorting algorithms
« Selection sort, mergesort

2. Binary search algorithm

3. Introduce Stack, Queue, PriorityQueue

Efficient sorting
algorithms

See example implementations here

Selection Sort with a Loop Invariant

* Loop invariant: On iteration i, the first 1
elements are the smallest i elements in
sorted order.

* On iteration i..
« Find the smallest element from index i onward

« (By loop invariant, must be the next smallest
element)

« Swap that with the element at index i

« Algorithm is called Selection Sort.

NO R aWwWOONOLO

https://coursework.cs.duke.edu/cs-201-spring-24/sorting

3/5/2024

Selection Sort Code and Runtime

3 public static void selectSort(int[] ar) { 8
4 for (int i=0; i<ar.length; i++) { 5
5 int minDex = 1i; 2
6 for (int j=i+l; j<ar.length; j++) {
7 if (ar[j] < ar[minDex]) { 6
8 minDex = j;
9 } 9
10 } 3
11 int temp = ar[i]; 1
12 ar[i] = ar[minDex]; Nested O(N)
13 ar[minDex] = temp; loops, overall 4
14 } oN?) 0
15}
7
Mergesort
High level idea:
* Base case: size 1
* Return list
« Recursive case: ' I
« Mergesort(first half) / \ / \
« Mergesort(second
half) Lel[e]
. | |
mpSci g &« Zybook

Mergesort

High level idea: EE E F FEE

*» Base case: size 1

* Return list

* Recursive case: B0
« Mergesort(first half)
» Mergesort(second f \

A
hal OE B 0@ =

* Merge the sorted

halves
P Return sorted Elf \ f ’\El
method

Zybook

3/5/2024

Mergesort recursive wrapper

* Arecursive wrapper method:
« |s the top-level method a user would call,
« Is not itself recursive, but makes the initial call to a
recursive method,
« Allows recursive helper method to have additional
parameters.

30 public static void mergeSort(int[] ar) {
31 mergeHelper(ar, 1: 0, ar.length);

32 }
Want to specify a left and right boundary of
the subarray for each recursive call to sort

10

Mergesort recursive method

« Should sort everything in ar starting at index 1
and up to (but not including) index r.

34 public static void mergeHelper(int[] ar, int 1, int r) {

35 int diff = r-1; 5 et
37 int mid = 1 + diff/2; elements, nothing to do

38 mergeHelperCar, 1, mid); R ly sort 1st half
. nergeHelperCar. mid, r): ecursively sort 1st hal

40 merge(ar, 1, mid, r);
41 3} Recursively sort 2nd half
Merge the 2 sorted parts

11
Merge method concept
« Given two sorted arrays, A and B, want to merge
them into one with all values from both.
* Need to keep track of two indices, indexA and
indexB.
A B
1 3 4 2 5 6
indexA indexB
12

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and

indexB.
1
/ :
1 3 4 5 6
indexA indexB

13

Merge method
* Given two sorted arrays, A and B, want to merge

them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

14

Merge method
« Given two sorted arrays, A and B, want to merge

them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

indexA indexB

15

3/5/2024

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and

indexB.
1 2
A B
1 3 4 2 5 6
indexA indexB

16

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and

indexB.
1 2 3
A / B
1 3 4 2 5 6
indexA indexB

17

Merge method

« Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and

indexB.
1 2 3
A B
1 3 4 2 5 6
indexA indexB

18

3/5/2024

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

1 3 4 2 5 6
indexA indexB

19

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

1 : 4 2 T 5 6
T 1
indexA indexB
20
Merge method

« Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

1 3 4 2 5 6
indexA indexB

21

3/5/2024

22

23

24

43
44
45

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

+ T2

indexA indexB

Merge method

* Given two sorted arrays, A and B, want to merge
them into one with all values from both.

* Need to keep track of two indices, indexA and
indexB.

Merge method initialization
+ Should merge ar([l...mid] and ar[mid...r]

public static void merge(int[] ar, int 1, int mid, int r) {
int[] sorted = new int[r-1];
int sDex=@; int 1Dex=l; int rDex=mid;

* Need a new array sorted to put the merged
results in, will copy back over ar later.

* Keeping track of 3 indices:
« sDex = where we are in the sorted array
« IDex = where we are in ar[l...mid]
 rDex = where we are in ar[mid...r]

3/5/2024

3/5/2024

Merge method loop

While something left in

46 while (1Dex < mid && rDex < r) {

47 if (ar[1Dex] <= ar[rDex]) {

48 sorted[sDex] = ar[1Dex];

49 1Dex++;

50 }

51 else {

52 sorted[sDex] = ar[rDex]; [EEACRGCEE eS|
53 rDex++; increment its index.

54 }

55 sDex++;

56}

Finishing the merge method

« Will finish with ar[l...mid] or ar[mid...r] first, need
to copy the rest of the other.
» Then need to copy sorted back onto ar(l...r]

if (1Dex == mid) { System.arraycopy(ar, rDex, sorted, sDex, r-rDex); }
else { System.arraycopy(ar, 1Dex, sorted, sDex, mid-1Dex); }
System.arraycopy(sorted, srcPos: @, ar, 1, r-1);

» Code uses the System.arraycopy method:

public static void arraycopy(Object sre,
int srcPos,
Object dest,
int destPos,
int length)

Coples an array from the specified source array, beginning at the specified
position, to the specified position of the destination array. A subsequence of

Our implementation of mergesort used two methods shown below. Which method(s) are
recursive? * [T}

53 public static void mergeSort(int[] ar) {

54 mergeHelper(ar, 1: 0, ar.length);
55 }

56

57 public static void mergeHelper(int[] ar, int 1, int r) {
58 int diff = r-1;

59 if (diff < 2) { return; }

60 int mid = 1 + diff/2;

61 mergeHelper(ar, 1, mid);

62 mergeHelper(ar, mid, r);

63 merge(ar, 1, mid, r);

64 }

mergeSort and mergeHelper are both recursive

Neither are recursive

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#arraycopy(java.lang.Object,int,java.lang.Object,int,int)

29

30

31

What best explains the purpose of the mergeSort wrapper method? *

53 public static void mergeSort(int[] ar) {

o

54 mergeHelper(ar, 1: 0, ar.length);
55 }

56

57 public static void mergeHelper(int[] ar, int 1, int r) {
58 int diff = r-1;

59 if (diff < 2) { return; }

0 int mid = 1 + diff/2;

61 mergeHelper(ar, 1, mid);

62 mergeHelper(ar, mid, r);

63 merge(ar, 1, mid, r);

64 1}

It heips us make the algorithm more efficient

It helps s make the aigorithm more comect
1t helps us avoid having to use recursion

Vo

nitalize the pararmeters to the recursive calls

Based on what you see, how many levels of recursion will there be to the merge sort
algorithm? To be precise: For a given index k of the original array, for how many recursive calls

will k

Answer in asymptotic notation as a function of N where N is the length of ar. *

53
54
55
56
57
58
59
60
61
62
63
64

lie between | and r-1, where | and r are the parameters of the recursive call?

public static void mergeSort(int[] ar) {
mergeHelper(ar, 1: 0, ar.length);

public static void mergeHelper(int[] ar, int 1, int r) {

int diff = r-1;

if (diff < 2) { return; }
int mid = 1 + diff/2; 3y om
mergeHelper(ar, 1, mid); -
mergeHelper(ar, mid, r);
mergeCar, 1, mid, r);

Oflog{N)
¥ [@X-"]

() O logiNy

Let N = r-l. What is the asymptotic runtime complexity of the merge method? The runtime
complexity of the arraycopy method is linear in the number of elements it copies, which is the
last parameter of the method. * [T}

put

blic static void mergeCint(] or, int 1, int mid, int r) {
int[] sorted = new int[r-1];
int sbex=2; int Dex=l; int rDex=mid;
while (IDex < mid && rDex < r) {
if (ar[1Dex] <= ar[rDex]) {
sorted[sDex] = or[1Dex];
Dex++;
3
else {
sorted[sDex] = ar[rDex];
rDex++;
}
sDex++;
}
if (lDex == mid) { System.arraycopy(ar, rDex, sorted, sbex, r-rDex); }
else { System.arraycopy(ar, lDex, sorted, sDex, mid-1Dex); }
System.arraycopy(sorted, srcPos: 9, ar, 1, r-1);

) om

() otlogiNy

O(N)
()} OIN log(N))

O oty

3/5/2024

10

How fast is mergesort? Empirically...

N Selection |Insertion |Merge | Java.util
(thousands) | sort(ms) |sort sort (ms) | Arrays.sort (ms)
(ms)
10k 22 40 1 2

30k 168 334 2 2
90k 1481 967 7 6

270k 13175 8716

32

14

Looks linear but not quite
O(N log(N)) is nearly linear.

Why mergesort is O(N log(N)),
intuition

* Recursive subproblem
~halvesin size.
» How times can we halve
before base case?
» ~log N times = O(log N)
levels of recursion

« If we can do ALL of the
merges at each levelin
O(N)total time?

« Overall [# levels[*O(N)
= O(N log(N)) time

33

(=1 (9 [[l e]

/A
DEE CEE

A A
OE B OE =

/A /A
B E EMO

Spring 2024, Niergesort & Zybook

Recursion tree

T(N)=N +T(N/2)+ T(N/2)

Depth of the
recursion tree
Number of recursive
calls before base

N
(N/2)*2=N
(N/4)*4=N

Total complexity of
each level across all
of the recursive
calls.

T(N) = O(N log N)

Visualization from the Zybook

SompSc 21

34

3/5/2024

11

Analyzing Recursive Runtime

Develop a recurrence relation of the form

Total runtime T(N) =a: T(g(N)) + f(N)
on input size N .
Recursive call(s; runtime
Where:)

35

36

Recall: T(N) = a-T(g(N)) + f(N)

» T(N) - runtime of method with input size N

« ais the number of recursive calls

» g(N) - size of subproblem in each recursive call

* f(N) - runtime of non-recursive code on input size N

(Not the most general formula, but enough for
today/201)

Analyzing Runtime of Recursive
Reverse
a=1
Only one rec. call
3 public static ListNode reverse(lListNode list) {
4 if (list == null || list.next == null) {
5 return list; .
e } giN)=N-1:
7 ListNode reversedLast = list.next; Rec. SprI’Ob.
8 ListNode reversedFirst = reverse(list.next); has list with
9 reversedlast.next = list; |
10 Tlist.next = null; one less node
11 return reversedFirst; than II’]DUT
12 }

fIN) =0(1):

Solving Recurrence Relations

Apply
recurrence
again to T(N-1)

Total
runtime

T(N)=T(N-1) +1
=(T(N-2)+1)+1

T(N-2

37

= T()4+N

case, just O(1)

3/5/2024

0(1) ops, each
Plugging in: T(N) = T(N — 1) + 0(1) 0(1) time

12

38

34

39

40

Recurrence Relations and

Expectations in 201

« In general, will not be asked to solve recurrence
relations on exams (that's later in CS 230/330)

* You may be asked to determine the recurrence

relation of a given algorithm/code.

T (N)
T (N)
T (N)
T (N)
T (N)
T (N)

= T(N/2) +
= T(N-1) +
= 2T (N/2)
= T(N/2)
= 2T (N/2)
= T(N-1)

+ o+ + o+

0(1)
0(1)
0(1)
O(N)
O(N)
O(N)

binary search
sequential search

tree traversal

gsort partition, find k™
mergesort, quicksort
selection or bubble sort

O(log N)
O(N)

O(N)

O(N)

O(N log N)
O (N2)

Runtime complexity of mergesort?

Let N = r-1, the number of elements to SOW

public static void mergeHelper(int[] ar, int 1, int r) {

int diff = r-1;

if (diff < 2) { return;
int mid = 1 + diff/2;
mergeHelper(ar, 1, mid);
mergeHelper(ar, mid, r);
merge(ar, 1, mid, r);

P
Tz

T(N) = 2T (g) +0(N) > T(N) is O(N log(N))

Binary Search

3/5/2024

13

41

42

43

Binary Search

* Given a sorted 1ist of N elements and a
target value, return:
« Index i such that 1ist.get(i) equals target, or
» -1if target notin list

» Example:
« If we search for 'h’, should return 4
« If we search for ‘¢, should return -1

I N S T S T N R
3 4 5 6 7 8

index 0 1 2

Java API Binary Search

Arrays.binarySearch (for arrays) and
Collections.binarySearch (for Lists).

String[] ar = {"ape", "bird", "cat", "dog", "elephant", "ferret",
ngecko", "hippo"};

int index = Arrays.binarySearch(ar, "cat"); m

Careful, assumes input is sorted (and does not
verify)!

String[] ar = {"cat", "ape", "bird",...

int index = Arrays.binarySearch(ar, "cat"); 4@

Java API Binary Search with
Comparator
Can pass a comparator comp, in which case:
1. Array/List should be sorted by that comp, and

2. Want an index i with i'th element e; has
comp.compare(e;, target)==0.

Sorted by
length

[ape, cat, dog, bird, gecko, hippo, ferret, elephant]

Comparator<String> comp =
Comparator.comparing(String::length);

Returns 1.
comp.compare
(“cat”,

index = Arrays.binarySearch(ar, "dog", comp); “dog”)==0

3/5/2024

14

44

45

46

How is Binary Search O(log(N))?

» How to find something in a list of N
elements without looping over the list?

* Let low (initially 0) and high (initially N-1) N/4 | log_2(N)
mark the limits of the active search N/8 | steps!
space.

« Want to cut down the search space by
half at each step:

I S N " O P N I

2 3 4 5 6 7 8

index 0 1

N

1

Binary Search in Pictures

* Searching for 'd" in

valve |0 Ib ¢ g [0 7 Ik _I'm_|p]
2 3 4 5 6 7 8

index 0 1

2 f o

mid=(low+high)/2
* 'h’>"d’, so need to keep searching in the lower half.
* Sethigh = mid-1;

Binary Search in Pictures

* Searching for 'd" in
I S " T P O I
index 0 1 2 3 4 5 6 7 8

low mid high

mid=(low+high)/2
« ‘b’ <'d’, so need to keep searching in the upper half.
e Setlow = mid+1;

3/5/2024

15

Binary Search in Pictures

« Searching for ‘d"in

I SIS T 7 N S T
2 3 4 5 6 7 8

index 0 1

mid=(low+high)/2

« 'd equals 'd, returnmid (2)

47

Reasoning about Coding Binary
Search

« Going to loop while (low <= high)
« Looping while there is anything left to search

« For correctness, want to maintain the following loop
invariant:
« If the target is in the array/list, it is in the range [low, high]

« At each step, either find the target and return,
or...cut [low, high] in half without losing the target
» Needs sortedness

48

lterative Code for
DIY Binary Search?

7 public static <T> int binarySearch(List<T> list, T target, Comparator<T> comp) {

8 int low = 0;
° int high = list.size()-1; <T> for generic type, can be a
10 while (low <= high) { : 4
n int mid = Clow + high)/2; String list, Integer list, .., just need
12 T midval = Llist.get(uid); target and Comparator of the
13 same type.
14 int emp = comp.compare(midval ,target);
15 if Camp < @)
16 low = mid + 1;
17 else if (cmp > @)
18 high = mid - 1;
19 else
20 return mid; // target found
21 }
22 return -1; // target not found
23}
mpSei
nary Sear
49

3/5/2024

16

	Slide 1
	Slide 2: Announcements, Coming up
	Slide 3: Midsemester Survey
	Slide 4: Today’s Agenda
	Slide 5: Efficient sorting algorithms
	Slide 6: Selection Sort with a Loop Invariant
	Slide 7: Selection Sort Code and Runtime
	Slide 8: Mergesort
	Slide 9: Mergesort
	Slide 10: Mergesort recursive wrapper
	Slide 11: Mergesort recursive method
	Slide 12: Merge method concept
	Slide 13: Merge method
	Slide 14: Merge method
	Slide 15: Merge method
	Slide 16: Merge method
	Slide 17: Merge method
	Slide 18: Merge method
	Slide 19: Merge method
	Slide 20: Merge method
	Slide 21: Merge method
	Slide 22: Merge method
	Slide 23: Merge method
	Slide 24: Merge method initialization
	Slide 25: Merge method loop
	Slide 26: Finishing the merge method
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: How fast is mergesort? Empirically…
	Slide 33: Why mergesort is O(N log(N)), intuition
	Slide 34: Recursion tree
	Slide 35: Analyzing Recursive Runtime
	Slide 36: Analyzing Runtime of Recursive Reverse
	Slide 37: Solving Recurrence Relations
	Slide 38: Recurrence Relations and Expectations in 201
	Slide 39: Runtime complexity of mergesort?
	Slide 40: Binary Search
	Slide 41: Binary Search
	Slide 42: Java API Binary Search
	Slide 43: Java API Binary Search with Comparator
	Slide 44: How is Binary Search O(log(N))?
	Slide 45: Binary Search in Pictures
	Slide 46: Binary Search in Pictures
	Slide 47: Binary Search in Pictures
	Slide 48: Reasoning about Coding Binary Search
	Slide 49: Iterative Code for DIY Binary Search?

