L17: Binary Trees &
Tree Recursion

Alex Steiger
CompSci 207: Spring 2024
3/18/2024

Announcements, Coming up

« Wednesday 3/20

« Midterm 2, linked list through 3/4 + Binary Search
from 3/6

« Practice exams available on Sakai resources

* Next Monday 3/25
* Project P4: Autocomplete due

« Next Wednesday 3/27
« APT 7 (tree recursion problems) due

Midsemester Survey

* Thanks!
* Results: ~60% completion rate, wanted >/70%

« Exam 2 Extra Credit:
* +1 ptto everyone
« Feedback is insightful and greatly appreciated
 +7 pt to everyone who submitted

Today's Agenda

1. Binary Trees
1. Definitions
2. Binary Search Trees

2. Tree Recursion problems

1. TreeCount
2. HeightLabel
3. Diameter

Binary Trees

Comparing TreeSet/Map with
HashSet/Map

TreeSet/Map HashSet/Map
* O(log(N)) add, contains, « O(1) add, contains, put,
put, get are not get, are amortized.
amortized.
o Stored in sorted order « Unordered data
 Natural ordering t()jy structures
default; can provide
Comparator

» Can getrange of values « Cannot get range

in sorted order efficiently, stored
efficiently unordered

TreeNode to store Strings

public class TreeNode 1
Like LinkedList but each node

TreeNode left; :
i has 2 references/pointers
TreeNode right; instead of 1

String 1info;

TreeNode(String s, TreeNode 1link, TreeNode rlink){
info = s;
left = 1link;

right = rlink;
} (hanas’
; ey (o

3/18/2024 CompsSci 201, Spring 2024, Binary Trees

APT TreeNode to store ints

APT TreeNode will only hold integer. Would need to
create another class to hold Strings? Another for...?

public class TreeNode {
int info;
TreeNode left;
TreeNode right;
TreeNode(int x){

info = x;

}

TreeNode(int x, TreeNode 1lNode, TreeNode rNode){
info = x;

left = 1Node;
right = rNode;

FAQ: Making a tree with nodes?

More terse

public class TreeNode { Just call the
2t -Lnday; TreeNode
TreeNode left; f
TreeNode right; constructor 1or
TreeNode(int x){ each new node

info = x; and connect them.

version

TreeNode myTree = new TreeNode(x: 5,
new TreeNode(x: 3,

} new TreeNode(x: 2),

TreeNode(int x, TreeNode 1Node, TreeNode rNode){ new TreeNode(x: 4)),

info = x; new TreeNode(x: 6));
left = 1Node;

right = rNode;
} (5)
TreeNode root = new TreeNode(x: 5);

root.left = new TreeNOdEC X: 3)} 6 e

root.right = new TreeNode(x: 6);
root.left.left = new TreeNode(x: 2);

root.left.right = new TreeNode(x: 4); e °

3/18/2024 CompsSci 201, Spring 2024, Binary Trees 10

O o~ T A~ WN B

= e
N 2 S

3/18/2024

Aside: Generic TreeNode?

public class TreeNode<T> {

T info; G . ” :
TreeNode<T> left: enerics allow us to write one
TreeNode<T> right; kind of Node (or List, or Set, ..
TreeNode(T x4 that can hold different types.
info = x;
}
TreeNode(T x, TreeNode<T> 1Node, TreeNode<T> rNode){
info = x;
left = 1Node;
right = rNode;
}
14 public static void main(String[] args) {
15 TreeNode<String> sTree = new TreeNode<>("hi");
16 TreeNode<Integer> iTree = new TreeNode<>(201);

CompSci 201, Spring 2024, Binary Trees 11

Tree terminology

* Root: "top node’, has no parent, node you pass for the whole
tree/subtree.

« Example: “macaque”

e [eaf “bottom” nodes, have no children / both null
« Example: "orangutan’

« Path: sequence of parent-child nodes

« Example: 'macaque’, ‘chimp’, "lemur”
» Subtree: nodes at and beneath —

7
n u n u

) . i macaqu;\‘
chimp’, "baboon”, “lemur Conimp

3/18/2024 CompsSci 201, Spring 2024, Binary Trees 12

Tree terminology

* Root: "top node’, has no parent, node you pass for the whole
tree/subtree.

« Example: “macaque”

e [eaf “bottom” nodes, have no children / both null
« Example: "orangutan’

« Path: sequence of parent-child nodes

« Example: 'macaque’, ‘chimp’, "lemur”
« Subtree: nodes at and beneath

° "Chimp”, ubaboonu’ ulemuru

/"---—- --.2-\
orangutan

3/18/2024 CompsSci 201, Spring 2024, Binary Trees

13

Tree terminology

* Root: "top node’, has no parent, node you pass for the whole
tree/subtree.

« Example: “macaque”

e [eaf “bottom” nodes, have no children / both null
« Example: "orangutan’

« Path: sequence of parent-child nodes

« Example: 'macaque’, ‘chimp’, "lemur”
» Subtree: nodes at and beneath R

. n o« noou ” /---l;n acaq Ue—.\-\'
* "Chlmp) ba boon) |emur @ ---""’-—--" e e

BN

»

orangutan

3/18/2024 CompsSci 201, Spring 2024, Binary Trees 14

Tree terminology

* Root: "top node’, has no parent, node you pass for the whole
tree/subtree.

« Example: “macaque”

e [eaf “bottom” nodes, have no children / both null
« Example: "orangutan’

« Path: sequence of parent-child nodes

« Example: 'macaque’, ‘chimp’, "lemur”
« Subtree: nodes at and beneath

« "chimp’, "baboon’, “lemur”

3/18/2024 CompsSci 201, Spring 2024, Binary Trees 15

More tree terminology

The depth of a node is the number of edges from the
root to the node.

The height of a tree is the O
maximum depth of any node.
&)

« (Sometimes defined as O
maximum number of nodes
on any root-to-leaf path

« =7+ maxdepth)

3/18/2024 CompsSci 201, Spring 2024, Binary Trees 16

INn-Order Traversal

* How to “loop over” nodes in a tree?
* One option: In-order traversal and visit/print/process

» Search tree values printed “in order”
 Left subtree, then current node, then right subtree

baboon, chimp, lemur

macaque | monkey, orangutan, tamarin

baboon, chimp, lemur, macaque, monkey, orangutan, tamarin

public void inOrder(TreeNode root) {
if (root !'= null) {

@ inOrder(root.left);) |

System.out.println (’r*oot.info) ;] ..
baboon
@ FnOPder(root.Pight);] -

Iy
}

3/18/2024

CompSci 201, Spring 2024, Binary Trees

macaque

Helper method to return
List of nodes’ info

public ArrayList<String> visit(TreeNode root) {
ArrayList<String> list = new ArrayList<>();
doInOrder(root,list);
return list;

}

private void doInOrder(TreeNode root, ArrayList<String> 1list) {
if (root!= null) {

@ doInOrder(root.left,list);
list.add(root.info);
@ doInOrder(root.right,list);
}
+

* In order traversal - Store in a list?
« Similar to prev. slide, but add nodes to a list instead of print

« Create empty list, call helper with list, then return it
e Values in returned list are in traversal order

3/18/2024 CompsSci 201, Spring 2024, Binary Trees

Three ways to recursively
traverse a tree

* Difference is in where the non-recursive part is

inorder preorder psotorder
void inOrder(TreeNode t) { void preOrder(TreeNode t) { void postOrder(TreeNode t) {
if (t != null) { if (t != null) { if (¢t !'= null) {
inOrder(t.left); System.out.println(t.info); postOrder(t.left);
System.out.println(t.info); preOrder(t.left); postOrder(t.right);
inOrder(t.right); preOrder(t.right); System.out.println(t.info);
} } }
} } }

3/18/2024 CompSci 201, Spring 2024, Binary Trees 19

Preorder Traversal

° reorder
macaque void preOrdeE(TreeNode t) {
: if (t != null) {
¢ Ch|mp Sy;tem.out.println(t.inio);
preOrder(t.left);
e baboon preOrder(t.right);
}
e lemur ’
* monkey
* tamarin
* orangutan 1 . 1

tamarin
/
orangutan

3/18/2024 CompSci 201, Spring 2024, Binary Trees 20

baboon

Binary Search Tree Invariant

A binary tree is a binary search /@\
tree if for every node: . i
values values

e |eft subtree values are all less than the <7 >7
node’s value

AND

« Right subtree values are all greater than
the node’s value

According to some ordering

(natural ordering if Comparable

or defined by Comparator)

Enables efficient search, similar to binary search!

Recursive Search In
Binary Search Tree

» Code for search
* Insertion is very similar
* target.compareTo(...)

public boolean contains(TreeNode tree, String target) {

if (tree == null) return false;
int result = target.compareTo(tree.info);
if (result == 0) return true;

if (result < 0) return contains(tree.left,target);
return contains(tree.right, target);

& &

3/18/2024 CompsSci 201, Spring 2024, Binary Trees 22

lterative search in binary search tree

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

// assumes node is a search tree, else may return false negatives
public static boolean contains(TreeNode<String> node, String target) {
while (node != null) {
int comp = node.info.compareTo(target);
if (comp == 0) {
return true;
}
else 1fCcomp > 0) {
node = node.left;

¥
else {

node = node.right;
}

}

return false;

Again, insertion is very similar

3/18/2024 CompsSci 201, Spring 2024, Binary Trees 23

L17-WOTO1-SearchTree-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

1

NetlD * [T}

Enter your answer

:

If we define the root to have depth 0 and the :

:) Clemur
height of a tree to be the maximum depth of
any node, then the height of the tree shown is... —

0

macaque

The leaves of the tree shown are... * [T}

O baboon, chimp, lemur, monkey, orangutan, tamarin
Q baboon, lemur, monkey, orangutan, tamarin

@ baboon, lemur, orangutan

O orangutan

4

macaque

The subtree rooted at monkey has how many
nodes? * [1}

Printing the values of this tree using a post-order traversal of this tree would print... *
A

| psotorder
void postOrder(TreeNode t) {
if (¢ != null) {
postOrder(t.left);
postOrder(t.right);
System.out.println(t.info);

macaque

}
}

O baboon, chimp, lemur, macaque, monkey, orangutan, tamarin
@ baboon, lemur, chimp, orangutan, tamarin, monkey, macaque

O macaque, chimp, baboon, lemur, monkey, tamarin, orangutan

°

If "capuchin” is added and the tree is still a
search tree, where is it added? * [T}

Q left child of lemur
X right child of baboon
O right child of lemur

() left child of baboon

BT Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for
the privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use

Tree Recursion and
Problem-Solving

ree Recursion tips / common
mistakes

Draw it out! Trace your code on small examples.

Return type of the method. Do you need a helper
method?

Base case first, otherwise infinite recursion / null
pointer exception.

If you make a recursive call, (usually) make sure
to use what it returns.

reeCount APT and pre-order
string representation

public class TreeCount {
PrOblem Statement public int count(TreeNode tree) {
// replace with working code
Write a method that returns the number of nodes of a binary tree. The CeLucupt
TreeNode class will be accessible when your method is tested. } }

is characterized by the pre-order string 8, 4, x, 6, x, x, 12, 10, x, x, 15, x, x

3/18/2024 CompsSci 201, Spring 2024, Binary Trees 27

ive Coding TreeCount

Solving TreeCount in Picture &
Code

— Base case: 0 nodes in an empty
2:in left 3inright tree / null

subtree + subtree

Recursive case:

« 1 (count current node)
« + count of left subtree
* + count of right subtree

public int count(TreeNode tree) {
if (tree == null) A
return O;

}

return 1 + count(tree.left) + count(tree.right);

3/18/2024 CompsSci 201, Spring 2024, Binary Trees 29

Messy Details of TreeCount
Solution

6=1+(2+3) public int count(TreeNode tree) {
if (tree == null) {
return 0O;

}

return 1 + count(tree.left) + count(tree.right);

3/18/2024 CompSci 201, Spring 2024, Binary Trees 30

Analyzing Recursive Runtime

Develop a recurrence relation of the form

L T+
runtime
Where:

* T(N) - runtime of method with input size N
e a is the number of recursive calls

* g(N) - how much input size decreases on each
recursive call

* f(N) - runtime of non-recursive code on input size N

3/18/2024 CompSci 201, Spring 2024, Binary Trees 31

Table of Recurrences

T(n) = T(n/2) + O(1) binary search O(log n)
T(n) = T(n-1) + O(1) sequential search O (n)

T(n) = 2T(n/2) + O(1) tree traversal O(n)

T(n) = T(n/2) + O(n) qsort partition ,find ki O (n)

T(n) = 2T(n/2) + O(n) mergesort, quicksort O(n log n)
T(n) = T(n-1) + O(n) selection or bubble sort O (n?)

We expect you to be able to derive a recurrence
relation from an algorithm, but not necessarily to
solve. We will provide a table of solutions like this for
exams.

Balance and Trees

Balanced Unbalanced

For each node, left and right One subtree has many more
subtrees have roughly equal nodes than the other.
number of nodes.

3/18/2024 CompsSci 201, Spring 2024, Binary Trees 33

Recurrence relation and runtime
for traversing a balanced tree

* T(n) time for count(tree)with n nodes (balanced)

public int count(TreeNode tree) {
if (tree == null) {
return 0;

].

return 1 + count(tree.left) + count(tree.right);

n/2 nodes in
this subtree

« T(n) =2T(n/2) + O(1)
O(n)

n/2 nodes in
this subtree

3/18/2024 CompSci 201, Spring 2024, Binary Trees

34

Recurrence relation and runtime
for traversing unbalanced tree

* T(n) time for count (tree)with n nodes (unbalanced)

public int count(TreeNode tree) {
if (tree == null) A
return 0;

].

return 1 + count(tree.left) + count(tree.right);

} T node in this n-1 nodes in

subtree this subtree

« T(N)=T(1)+T(n-1) + O(1)
. =0(1) + T(n-1) + O(1)
. =0(n)

3/18/2024 CompSci 201, Spring 2024, Binary Trees 35

Balance Binary Search Tree
Runtime (add, contains)

Balanced Unbalanced

T(n) =T(n/2) + O(1) PRASMLURETIRES T(n) = T(n-1) + O(1)
_ O(Iog(n)) to thllsai)ergblem — O(n)

3/18/2024 CompSci 201, Spring 2024, Binary Trees 36

	Slide 1
	Slide 3: Announcements, Coming up
	Slide 4: Midsemester Survey
	Slide 5: Today’s Agenda
	Slide 6: Binary Trees
	Slide 7: Comparing TreeSet/Map with HashSet/Map
	Slide 8: TreeNode to store Strings
	Slide 9: APT TreeNode to store ints
	Slide 10: FAQ: Making a tree with nodes?
	Slide 11: Aside: Generic TreeNode?
	Slide 12: Tree terminology
	Slide 13: Tree terminology
	Slide 14: Tree terminology
	Slide 15: Tree terminology
	Slide 16: More tree terminology
	Slide 17: In-Order Traversal
	Slide 18: Helper method to return List of nodes’ info
	Slide 19: Three ways to recursively traverse a tree
	Slide 20: Preorder Traversal
	Slide 21: Binary Search Tree Invariant
	Slide 22: Recursive Search in Binary Search Tree
	Slide 23: Iterative search in binary search tree
	Page 1
	Page 2
	Page 3
	Slide 25: Tree Recursion and Problem-Solving
	Slide 26: Tree Recursion tips / common mistakes
	Slide 27: TreeCount APT and pre-order string representation
	Slide 28: Live Coding TreeCount
	Slide 29: Solving TreeCount in Picture & Code
	Slide 30: Messy Details of TreeCount Solution
	Slide 31: Analyzing Recursive Runtime
	Slide 32: Table of Recurrences
	Slide 33: Balance and Trees
	Slide 34: Recurrence relation and runtime for traversing a balanced tree
	Slide 35: Recurrence relation and runtime for traversing unbalanced tree
	Slide 36: Balance Binary Search Tree Runtime (add, contains)

