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L19: Greedy 
Algorithms, Huffman 

Coding
Alex Steiger

CompSci 201: Spring 2024

3/25/2024

Person in CS: Kathleen Booth

• 1922 – 2022

• British Mathematician, PhD in 1950

• Worked to design the first 
assembly language for early 
computer designs in the 1950s

• May have been the first woman to 
write a book on programming

• Early interest in neural networks
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Logistics, Coming up
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• Today: Monday 3/25
• Project P4: Autocomplete due

• This Wednesday 3/27
• APT 7 (tree recursion problems) due

• Monday 4/1
• Nothing due—P5 the week after

1

2

3



3/25/2024

2

Today’s agenda

• Solve HeightLabel APT

• Introduce Greedy Algorithms

• Huffman Coding (P5: Huffman)
• Uses trees and greedy algorithms

• Back to more tree-based data structures on Wed
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Balance and Trees

Balanced Unbalanced
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For each node, left and right 
subtrees have roughly equal 
number of nodes.

One subtree has many more 
nodes than the other.

Recurrence relation and runtime 
for traversing a balanced tree

• T(n) time for count(tree)with n nodes (balanced) 

• T(n) = 2T(n/2) + O(1)

• = O(n)

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 6

n/2 nodes in 
this subtree

n/2 nodes in 
this subtree
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Recurrence relation and runtime 
for traversing unbalanced tree

• T(n) time for count(tree)with n nodes (unbalanced) 

• T(n) = T(1) + T(n-1) + O(1)

•         = O(1) + T(n-1) + O(1)

•         = O(n)
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1 node in this 
subtree

n-1 nodes in 
this subtree

Balance Binary Search Tree 
Runtime (add, contains)

Balanced Unbalanced
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T(n) = T(n/2) + O(1)
= O(log(n))

T(n) = T(n-1) + O(1)
= O(n)

We will return 
to this problem 

later!

HeightLabel APT

• Create a new tree from a tree parameter
• Same shape, nodes labeled with height

• Use new TreeNode. With what values …
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https://www2.cs.duke.edu/csed/newapt/heightlabel.html 
 

Note that this APT 1-indexes 
height/depth. We introduced it 

0-indexed.
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Solving HeightLabel in Pictures
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5 = 1 + max(4, 2)

2 = 1 + max(1, 1)

1 = 1 + max(0, 0)

When null? 0?

Base case: when null, 0

Recursive case: height of node is 
1 + max(height of node.left 
               height of node.right)

Live Coding HeightLabel
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Solving HeightLabel in Code
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public TreeNode rewire(TreeNode t) {

    if (t == null) return null;

return new TreeNode(height(t),

rewire(t.left),

rewire(t.right));

}

private int height(TreeNode t) {

if (t == null) return 0;

 return 1 + Math.max(height(t.left), 

                       height(t.right));

}

Base case: when null, 0

Recursive case: height of node is 
1 + height of node.left 
+ height of node.right

Method doesn’t just calculate 
height, is supposed to create 
and return new tree with new 
nodes…

Using height helper 
method, get height, create 
new node, return. 
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Rewire runtime?

• Recurrence of this correct code? T(n) = 

• 2T(n/2)+O(n)

• Balanced tree

• T(n-1)+O(n)

• Unbalanced
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public TreeNode rewire(TreeNode t) {

    if (t == null) return null;

return new TreeNode(height(t),

rewire(t.left),

rewire(t.right));

}

  

private int height(TreeNode t) {

if (t == null) return 0;

 return 1 + Math.max(height(t.left), 

                       height(t.right));

}

T(n/2) if balanced

T(n/2) if balanced

T(n)

O(n)

HeightLabel Complexity

• Balanced? 
• T(N) = 2T(n/2) + O(n) → O(N log N)

• Unbalanced,
• T(N) = T(N-1) + O(N) → O(N2)

• Doable in O(N) time? Yes, if we don't call height
• Balanced:     T(N) = 2T(N/2) + O(1) 

• Unbalanced: T(N) = T(N-1) + O(1) 
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HeightLabel in O(N) time

• If recursion works, subtrees store heights!

• Balanced? O(N), 
• 2T(n/2)+O(1) 

• Unbalanced, O(N), 
• T(N-1)+O(1)
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L19-WOTO1-HeightLabel-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetID * 

1

solutions

Here is the recursive height helper method we wrote (1 indexes height). Which recurrence 
relation best describes the runtime complexity of height as a function of N = the number of 

2



T(N) = 2T(N/2) + O(1)

T(N) = 2T(N/2) + O(N)

T(N) = 2T(N-1) + O(1)

T(N) = T(N-1) + O(1)

nodes in the tree t **assuming the tree is balanced**?  * 

Here is another version of the height helper method. Will it work correctly? * 
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Yes, this is equivalent to the previous approach

No, this will not compile

No, this computes different height values

No, this generates a runtime exception

T(N) = 2T(N/2) + O(1)

T(N) = 2T(N/2) + O(N)

Here is an equivalent version of the rewire method that uses the height helper method. Which 
recurrence relation best describes the runtime complexity of rewire as a function of N = the 
number of nodes in the tree t **assuming the tree is balanced**? You may assume that the 
height method is O(N). * 
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T(N) = 2T(N-1) + O(1)

T(N) = T(N-1) + O(1)

The height of the tree, because we start at the root

1, because a leaf node will be the first created (and this is 1-indexed)

Cannot determine without seeing the particular tree

Suppose you run this recursive method on some tree t. During the execution of the program, 
what is myHeight for the **first** (in terms of execution of the code) TreeNode that gets 
returned by line 13 on any of the recursive invocations of the method? * 
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Greedy Algorithms for 
Discrete Optimization
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Optimization

• Find the solution that 
maximizes or minimizes 
some objective

• Example: Knapsack
• Find the bundle of items 

with maximum value 
without exceeding a budget.

• What should you buy if you 
have $10?

• (Only one of each item)
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Items Value Cost

2 $1

1 $1

12 $10

Greedily Searching for Optima

• Start with a partial solution. In each iteration 
make a step toward a complete solution.

• Greedy principle: In each iteration, make the step 
that “best improves” the solution (e.g., the 
lowest cost or highest value step).

• Knapsack example: 
• Partial solution is a set of items you can afford

• Greedy step: Add the item with best value per cost 
ratio that you can afford with remaining money
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Local Optima vs Global Optima?

Greedy algorithms do not always guarantee to find the 
best overall solution, called global optima.
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Items Value Cost Value/Cost

2 $1 2

1 $1 1

12 $10 1.2

0. Start with $10
1. Buy apple, best 

value/cost. $8 
remaining

2. Buy banana (can’t 
afford pizza). $7 
remaining

3. Done: Can’t afford 
any more items. 
Total value of items 
= 3

But just buying the pizza has value 12, 
which is the (only) global optimum

Why Learn Greedy Algorithms? 

1. Sometimes a greedy algorithm is optimal 
(always returns global optima). Examples:
• Huffman Compression (today, Project 5)

• Computing shortest paths in networks/graphs

2. Sometimes the greedy algorithm is not 
optimal, but still works well in practice

3. A greedy algorithm is typically easy to start 
with for optimization problems.
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Aside: What is Machine Learning?

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 22

20

21

22



3/25/2024

8

Aside continued – How do you 
“learn a model” greedily?

• Often (in deep learning) represent a 
model with a neural network.

• Learn model: optimize parameters of 
network on data.

• How to optimize the parameters?

• Greedy algorithm called gradient 
descent

• At each step, make a small change 
that best improves model 
performance
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Huffman Coding
Topic of Project 5: Huffman
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Huffman Compression

• Zip • Unicode • JPEG • MP3

Huffman compression used in all of these and more!

Representing data with bits: Preferably fewer bits
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Encoding

• Eventually, everything stored as bit 
sequence: 011001011…

• Fixed length encoding

• Each value has a unique bit 
sequence of the same length stored 
in a table.

• With 𝑁 unique values to encode, 
need ⌈log2 𝑁 ⌉ bits per value.

• E.g., with 8 characters, need 3 bits 
per character.  
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Optimizing Encoding?

• Suppose we have three characters {a, b, c}:
• a appears 1,000,000 times
• b and c appear 50,000 times each

• Fixed length encoding uses 2,200,000 bits:
• ⌈log2 3 ⌉ = 2 bits per character
• 2 bit/char * 1,100,000 chars = 2,200,000 bits

• Variable length encoding: Use fewer bits to encode more 
common values, more bits to encode less common 
values.
• What if we encode: a = 1, b = 10, c = 11?
• Only uses 1,200,000 bits.  

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 27

Decoding Fixed Length

• Fixed Length with length k

• Every k bits, look up in table

• 001 001 010 110

• 001 → o

• 001 → o

• 010 → p

• 110 → s
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Decoding Variable Length

• What if we use 

• a = 1
• b = 10

• c = 11

• How would we decode 1011? 

• “baa” or “bc?”

• Problem: Encoding of a (1) is a prefix of the 
encoding for c (11). Ambiguous!
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Prefix Property:
Encoding as a Tree

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 30

Convention: 0 for 
left and 1 for 

right

Encoding is the 
sequence of 0’s and 

1’s on root to leaf 
path

Values you want to 
encode are leaves: 

Ensures prefix 
property.

Values deeper in tree 
encoded with more bits 
than those earlier in the 

tree.

Huffman Coding

• Greedy algorithm for building an optimal variable-
length encoding tree.

• High level idea:
• Start with the leaves/values you want to encode 

with weights = frequency. Then repeat until all 
leaves are in single tree:

• Greedy step: Choose the lowest-weight nodes to 
connect as children to a new node with weight = 
sum of children.

• Implementation? Priority queue!
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Visualizing the Algorithm
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Encoding the text “go go gophers”

P5 Outline

1. Write Decompress first

• Takes a compressed file (we give you some)

• Reads Huffman tree from bits

• Uses tree to decode bits to text

2. Write Compress second

• Count frequencies of values/characters

• Greedy algorithm to build Huffman tree

• Save tree and file encoded as bits
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Diameter Problem

leetcode.com/problems/diameter-of-binary-tree

Calculate the diameter of a binary tree, the length 
of the longest path (maybe through root, maybe 
not, can’t visit any node twice).
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Diameter 4 Live Coding
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https://leetcode.com/problems/diameter-of-binary-tree

