L19: Greed
Algorithms, Huffman
Coding

Alex Steiger
CompSci 201: Spring 2024
3/25/2024

Person in CS: Kathleen Booth

* 1922 - 2022
« British Mathematician, PhD in 1950

» Worked to design the first
assembly language for early
computer designs in the 1950s

» May have been the first woman to
write a book on programming

« Early interest in neural networks

Logistics, Coming up

* Today: Monday 3/25
* Project P4: Autocomplete due

* This Wednesday 3/27
« APT 7 (tree recursion problems) due

» Monday 4/1
» Nothing due—P5 the week after

3/25/2024

3/25/2024

Today's agenda

* Solve HeightLabel APT

* Introduce Greedy Algorithms

« Huffman Coding (P5: Huffman)
« Uses trees and greedy algorithms
» Back to more tree-based data structures on Wed

Balance and Trees

Balanced

For each node, left and right
subtrees have roughly equal
number of nodes.

Unbalanced

One subtree has many more
nodes than the other.

Recurrence relation and runtime
for traversing a balanced tree

* T(n) time for count (tree)with n nodes (balanced)
public int count(TreeNode tree) {
if (tree == null) {
return 0;

}

return 1 + count(tree.left) + count(tree.right);

n/2 nodes in
this subtree

* T(n) = 2T(n/2) + O(1)
«=0(n

n/2 nodes in
this subtree

=

Recurrence relation and runtime
for traversing unbalanced tree
« T(n) time for count (tree)with n nodes (unbalanced)

public int count(TreeNode tree) {
if (tree == null) {

return 9;
}.
return 1 + count(tree.left) + count(tree.right);
} . .
1 node in this n-1 nodes in
subtree this subtree
* T(n) = T(1) + T(n-1) + O(1)
. =0(1) + T(n-1) + O(1)
- =0

Balance Binary Search Tree
Runtime (add, contains)

Balanced Unbalanced

T(n) = T(n/2) + O(1) PAERAREWER T(n) = T(n-1) + O(1)
= 0(log(n)) to th\;?er?lblem =0(n)

SompSci 201, Spring & Huffman

HeightLabel APT

https://www2.cs.duke.edu/csed/newapt/heightlabel. html

« Create a new tree from a tree parameter
» Same shape, nodes labeled with height
* Use new TreeNode. With what values ...

(s ()
ujk) — (T
Gl T
(7 (=) (5) 3 oo
R T e SN
W\ ii (U ’>2< Note that this APT 1-indexes
(o) K;'? At height/depth. We introduced it
e (IR 0O-indexed.

3/25/2024

https://www2.cs.duke.edu/csed/newapt/heightlabel.html

10

11

12

Solving HeightLabel in Pictures

Base case: when null, 0

height of node is
+ max(height of node.left
height of node.right)

2: SompSci 201, Spring 2024, Greedy & Huffman C

Live Coding HeightlLabel

2024 CompSci 201, Spring 2024, Greedy & Huffman

Solving HeightLabel in Code

private int height(TreeNode t) when null,
if (t == null) return 07 .
return 1 + Math.max (height (t.left), Recursive case: height of node is
PO Yo 1 height of node left
) 0
public class HeightLabel {
i e rewire(TreeNode t

// replace with working code
return null;

}
public TreeNode rewire(TreeNode t) { s
if (t == null) return null; method, get height,
return new TreeNode (height (t) e g
rewire (t.left),
rewire(t.right));

2024 CompSci 201, Spring 2024, Greedy & Huffma

3/25/2024

Rewire runtime?
* Recurrence of this correct code? T(n) =

e tremede & (L0

public rewire()

3/25/2024

* 2T(n/2)+0(n) if (¢ == null) return null; [T(n/2) if balanced |
return new TreeNode (height(t), —
* Balanced tree Tewire (t.1left)

| o) [rewire(t.right));:
} R
* T(n-1)+0(n T
() () private int height (o1 [T(n/2) if balanced |
* Unbalanced if (t == null) return 0;

return 1 + Math.max (height(t.left),
height (t.right));

14

HeightLabel Complexity

* Balanced?
* T(N) = 2T(n/2) + O0(n) — O(N log N)

» Unbalanced,
« T(N) = T(N-1) + O(N) — O(N?)

* Doable in 0(N) time? Yes, if we don't call height
* Balanced: T(N) = 2T(N/2) + 0(1)
« Unbalanced: T(N) = T(N-1) + 0(1)

15

HeightLabel in O(N) time

« If recursion works, subtrees store heights!

public TreeNode rewire(TreeNode t) {
if (t == null) { return null; }

* Balanced? o (N), TreeNode leftDfe = remire(t.left);
TreeNode rightOfHe = rewire(t.right);
° 2T (n/2)+0(1) int lHeight = 8;
int pHeight = 8;

. Unbalanced, O (N) if (leftOfMe 1= null) { LHeignt = leftOfhe.info; }
. - if (rightDfMe != null) { rHeight = rightDfMe.info; }
T (N 1) +0 (1) return new TreeNode(
1+Hath.max(LHeight, rHeight),
leftDfMe,
rightdfHe) ;

16

L19-WOTO1-HeightLabel-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.
* Required
NetlD * [T}

solutions

2

Here is the recursive height helper method we wrote (1 indexes height). Which recurrence
relation best describes the runtime complexity of height as a function of N = the number of

nodes in the tree t **assuming the tree is balanced**? * [}

private int height(TreeNode t) {
if (t == null) return 0;
return 1 + Math.maxCheight(t.left),
height(t.right));

S~ W N -

5 %

@ TV = 2T(N/2) + 0(1)
(O T(N) = 2T(N/2) + O(N)
() T(N) = 2T(N-1) + O(1)

() TNy = T(N-1) + O(1)

3

Here is another version of the height helper method. Will it work correctly? * [T}

1 private int height(TreeNode t) {

2 int value = 1 + Math.max(Cheight(t.left), height(t.right));
3 1f (t == null) return 0;

< return value;

5

O Yes, this is equivalent to the previous approach
O No, this will not compile
O No, this computes different height values

@ No, this generates a runtime exception

4

Here is an equivalent version of the rewire method that uses the height helper method. Which
recurrence relation best describes the runtime complexity of rewire as a function of N = the
number of nodes in the tree t **assuming the tree is balanced**? You may assume that the
height method is O(N). * 1}

8 public TreeNode rewire(TreeNode t) {

9 if (t == null) return null;

10 int myHeight = height(t);

11 TreeNode 1child = rewire(t.left);

12 TreeNode rchild = rewire(t.right);

13 return new TreeNode(myHeight, 1child, rchild);
14 }

O T(N) = 2T(N/2) + O(1)

@ T(N) = 2T(N/2) + O(N)

() T(N) = 2T(N-1) + O(1)

() T(N) = T(N-1) + O(1)

5

Suppose you run this recursive method on some tree t. During the execution of the program,
what is myHeight for the **first** (in terms of execution of the code) TreeNode that gets
returned by line 13 on any of the recursive invocations of the method? * [T}

8

9
10
11
12
13
14

public TreeNode rewire(TreeNode t) {

}

if (t == null) return null;

int myHeight = height(t);

TreeNode 1child = rewire(t.left);

TreeNode rchild = rewire(t.right);

return new TreeNode(myHeight, 1child, rchild);

O The height of the tree, because we start at the root

@ 1, because a leaf node will be the first created (and this is 1-indexed)

O Cannot determine without seeing the particular tree

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

Greedy Algorithms for
Discrete Optimization

17

Optimization

* Find the solution that
maximizes or minimizes
some objective

Items Value Cost
- xample:Knapsack [N K
2 $1

« Find the bundle of items
with maximum value

without exceeding a budget. 1 $1
=+ What should you buy if you @
have $10? =B > $10
« (Only one of each item) o3
18

Greedily Searching for Optima

« Start with a partial solution. In each iteration
make a step toward a complete solution.

« Greedy principle: In each iteration, make the step
that “best improves” the solution (e.g., the
lowest cost or highest value step).

» Knapsack example:
« Partial solution is a set of items you can afford

« Greedy step: Add the item with best value per cost
ratio that you can afford with remaining money

19

3/25/2024

Local Optima vs Global Optima?

Greedy algorithms do not always guarantee to find the
best overall solution, called global optima.

e

1. Buy apple, best
value/cost. $8 @ 2 $1 2
remaining

. Buy banana (can't Z> 1 $1 1

afford pizza). §7
remaining) @\ 12 $10 12
. Done: Can't afford =
any more items.
Total value of items
=3

24 JompSci 201, Spring reedy & Huffman

N

w

But just buying the pizza has value 12,
which is the (only) global optimum

20

Why Learn Greedy Algorithms?

1. Sometimes a greedy algorithm is optimal
(always returns global optima). Examples:
 Huffman Compression (today, Project 5)

» Computing shortest paths in networks/graphs

2. Sometimes the greedy algorithm is not
optimal, but still works well in practice

3. Agreedy algorithm is typically easy to start
with for optimization problems.

pring sreedy & Huffman

21

Aside: What is Machine Learning?

Text generation

SompSci 201, Spring Greedy & Huffma

22

3/25/2024

Aside continued — How do you
‘learn a model” greedily?

« Often (in deep learning) represent a ! y

model with a neural network. o
« Learn model: optimize parameters of X ~{
network on data. s A

* How to optimize the parameters?
« Greedy algorithm called gradient
descent
« At each step, make a small change
that best improves model
performance

23

Huffman Coding

Topic of Project 5: Huffman

24

Huffman Compression

Representing data with bits: Preferably fewer bits

* Zip « Unicode « JPEG *« MP3

unicode
Huffran compression used in all of these and more!

25

3/25/2024

3/25/2024

Encoding

ASCII coding
char ASCII binary
g 103 100111
« Eventually, everything stored as bit o
sequence: 0110010117... : 104 1101000
e 101 1100101
£ 114 1110010
« Fixed length encoding — Gy

« Each value has a unique bit —

sequence of the same length stored char code binary
inatable. 5% @
« With N unigue values to encode, p 2@
need [log,(N)] bits per value. —
* E.g., with 8 characters, need 3 bits o
per character. e 71

26

Optimizing Encoding?

« Suppose we have three characters {a, b, c}:
* a appears 1,000,000 times
« b and c appear 50,000 times each

« Fixed length encoding uses 2,200,000 bits:
« [log,(3)] = 2 bits per character
« 2 bit/char * 1,100,000 chars = 2,200,000 bits

« Variable length encoding: Use fewer bits to encode more
common values, more bits to encode less common
values.

« What if we encode:a=1,b=10,c=11?
« Only uses 1,200,000 bits.

27

Decoding Fixed Length

* Fixed Length with length k
* Every k bits, look up in table ST
+001 001010 110 o

000
—_) — —

0

1 001
2 010
3 on
4 100
5

6

7

*001T->o0
*001T->o0
*010-p
*110->s G

101
110
111

w o0 T Om

28

Decoding Variable Length

« What if we use

ea=1
+b=10
ec=11

* How would we decode 1011?
* "baa” or “bc?”

« Problem: Encoding of a (1) is a prefix of the
encoding for ¢ (11). Ambiguous!

mpSci Spring & Huffman

29
Prefix Property:
Encoding as a Tree
char binary
‘s 10 Convention: 0 for
o 1 left and 1 for
o 0100 right
W' o101
‘e! 0110
v o111 Val =
5 alues you want to
‘s‘ o encode are leaves:
001 Ensures prefix
property.
Encoding is the
sequence of 0's and
1's on root to leaf Values deeper in tree
path encoded with more bits
than those earlier in the
tree.
] Huffr
30

Huffman Coding

* Greedy algorithm for building an optimal variable-
length encoding tree.

« High level idea:

« Start with the leaves/values you want to encode
with weights = frequency. Then repeat until all
leaves are in single tree:

« Greedy step: Choose the lowest-weight nodes to
connect as children to a new node with weight =
sum of children.

« Implementation? Priority queue!

ompSci 201, Spring Greedy & Huffma

31

3/25/2024

10

3/25/2024

Visualizing the Algorithm

Encoding the text “go go gophers”

g

o

o 1110
'h' 1101
e

T

k)

101
111
1100
v 100

32

P5 Qutline

1. Write Decompress first
« Takes a compressed file (we give you some)
* Reads Huffman tree from bits
« Uses tree to decode bits to text

2. Write Compress second
» Count frequencies of values/characters
« Greedy algorithm to build Huffman tree
« Save tree and file encoded as bits

34

Diameter Problem

leetcode.com/problems/diameter-of-binary-tree
Calculate the diameter of a binary tree, the length
of the longest path (maybe through root, maybe
not, can't visit any node twice).

Diameter 3

Diameter 4 Live Coding

go

35

11

https://leetcode.com/problems/diameter-of-binary-tree

