
3/25/2024

1

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 1

L19: Greedy
Algorithms, Huffman

Coding
Alex Steiger

CompSci 201: Spring 2024

3/25/2024

Person in CS: Kathleen Booth

• 1922 – 2022

• British Mathematician, PhD in 1950

• Worked to design the first
assembly language for early
computer designs in the 1950s

• May have been the first woman to
write a book on programming

• Early interest in neural networks

3/18/2024 CompSci 201, Spring 2024, Binary Trees 2

Logistics, Coming up

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 3

• Today: Monday 3/25
• Project P4: Autocomplete due

• This Wednesday 3/27
• APT 7 (tree recursion problems) due

• Monday 4/1
• Nothing due—P5 the week after

1

2

3

3/25/2024

2

Today’s agenda

• Solve HeightLabel APT

• Introduce Greedy Algorithms

• Huffman Coding (P5: Huffman)
• Uses trees and greedy algorithms

• Back to more tree-based data structures on Wed

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 4

Balance and Trees

Balanced Unbalanced

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 5

0

1

2

3

4

2 6

1 3 5 7

For each node, left and right
subtrees have roughly equal
number of nodes.

One subtree has many more
nodes than the other.

Recurrence relation and runtime
for traversing a balanced tree

• T(n) time for count(tree)with n nodes (balanced)

• T(n) = 2T(n/2) + O(1)

• = O(n)

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 6

n/2 nodes in
this subtree

n/2 nodes in
this subtree

4

5

6

3/25/2024

3

Recurrence relation and runtime
for traversing unbalanced tree

• T(n) time for count(tree)with n nodes (unbalanced)

• T(n) = T(1) + T(n-1) + O(1)

• = O(1) + T(n-1) + O(1)

• = O(n)

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 7

1 node in this
subtree

n-1 nodes in
this subtree

Balance Binary Search Tree
Runtime (add, contains)

Balanced Unbalanced

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 8

0

1

2

3

4

2 6

1 3 5 7

T(n) = T(n/2) + O(1)
= O(log(n))

T(n) = T(n-1) + O(1)
= O(n)

We will return
to this problem

later!

HeightLabel APT

• Create a new tree from a tree parameter
• Same shape, nodes labeled with height

• Use new TreeNode. With what values …

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 9

https://www2.cs.duke.edu/csed/newapt/heightlabel.html

Note that this APT 1-indexes
height/depth. We introduced it

0-indexed.

7

8

9

https://www2.cs.duke.edu/csed/newapt/heightlabel.html

3/25/2024

4

Solving HeightLabel in Pictures

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 10

5 = 1 + max(4, 2)

2 = 1 + max(1, 1)

1 = 1 + max(0, 0)

When null? 0?

Base case: when null, 0

Recursive case: height of node is
1 + max(height of node.left
 height of node.right)

Live Coding HeightLabel

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 11

Solving HeightLabel in Code

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 12

public TreeNode rewire(TreeNode t) {

 if (t == null) return null;

return new TreeNode(height(t),

rewire(t.left),

rewire(t.right));

}

private int height(TreeNode t) {

if (t == null) return 0;

 return 1 + Math.max(height(t.left),

 height(t.right));

}

Base case: when null, 0

Recursive case: height of node is
1 + height of node.left
+ height of node.right

Method doesn’t just calculate
height, is supposed to create
and return new tree with new
nodes…

Using height helper
method, get height, create
new node, return.

10

11

12

3/25/2024

5

Rewire runtime?

• Recurrence of this correct code? T(n) =

• 2T(n/2)+O(n)

• Balanced tree

• T(n-1)+O(n)

• Unbalanced

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 14

public TreeNode rewire(TreeNode t) {

 if (t == null) return null;

return new TreeNode(height(t),

rewire(t.left),

rewire(t.right));

}

private int height(TreeNode t) {

if (t == null) return 0;

 return 1 + Math.max(height(t.left),

 height(t.right));

}

T(n/2) if balanced

T(n/2) if balanced

T(n)

O(n)

HeightLabel Complexity

• Balanced?
• T(N) = 2T(n/2) + O(n) → O(N log N)

• Unbalanced,
• T(N) = T(N-1) + O(N) → O(N2)

• Doable in O(N) time? Yes, if we don't call height
• Balanced: T(N) = 2T(N/2) + O(1)

• Unbalanced: T(N) = T(N-1) + O(1)

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 15

HeightLabel in O(N) time

• If recursion works, subtrees store heights!

• Balanced? O(N),
• 2T(n/2)+O(1)

• Unbalanced, O(N),
• T(N-1)+O(1)

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 16

14

15

16

L19-WOTO1-HeightLabel-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetID *

1

solutions

Here is the recursive height helper method we wrote (1 indexes height). Which recurrence
relation best describes the runtime complexity of height as a function of N = the number of

2

T(N) = 2T(N/2) + O(1)

T(N) = 2T(N/2) + O(N)

T(N) = 2T(N-1) + O(1)

T(N) = T(N-1) + O(1)

nodes in the tree t **assuming the tree is balanced**? *

Here is another version of the height helper method. Will it work correctly? *

3

Yes, this is equivalent to the previous approach

No, this will not compile

No, this computes different height values

No, this generates a runtime exception

T(N) = 2T(N/2) + O(1)

T(N) = 2T(N/2) + O(N)

Here is an equivalent version of the rewire method that uses the height helper method. Which
recurrence relation best describes the runtime complexity of rewire as a function of N = the
number of nodes in the tree t **assuming the tree is balanced**? You may assume that the
height method is O(N). *

4

T(N) = 2T(N-1) + O(1)

T(N) = T(N-1) + O(1)

The height of the tree, because we start at the root

1, because a leaf node will be the first created (and this is 1-indexed)

Cannot determine without seeing the particular tree

Suppose you run this recursive method on some tree t. During the execution of the program,
what is myHeight for the **first** (in terms of execution of the code) TreeNode that gets
returned by line 13 on any of the recursive invocations of the method? *

5

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.
Microsoft Forms | AI-Powered surveys, quizzes and polls Create my own form
Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

3/25/2024

6

Greedy Algorithms for
Discrete Optimization

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 17

Optimization

• Find the solution that
maximizes or minimizes
some objective

• Example: Knapsack
• Find the bundle of items

with maximum value
without exceeding a budget.

• What should you buy if you
have $10?

• (Only one of each item)

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 18

Items Value Cost

2 $1

1 $1

12 $10

Greedily Searching for Optima

• Start with a partial solution. In each iteration
make a step toward a complete solution.

• Greedy principle: In each iteration, make the step
that “best improves” the solution (e.g., the
lowest cost or highest value step).

• Knapsack example:
• Partial solution is a set of items you can afford

• Greedy step: Add the item with best value per cost
ratio that you can afford with remaining money

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 19

17

18

19

3/25/2024

7

Local Optima vs Global Optima?

Greedy algorithms do not always guarantee to find the
best overall solution, called global optima.

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 20

Items Value Cost Value/Cost

2 $1 2

1 $1 1

12 $10 1.2

0. Start with $10
1. Buy apple, best

value/cost. $8
remaining

2. Buy banana (can’t
afford pizza). $7
remaining

3. Done: Can’t afford
any more items.
Total value of items
= 3

But just buying the pizza has value 12,
which is the (only) global optimum

Why Learn Greedy Algorithms?

1. Sometimes a greedy algorithm is optimal
(always returns global optima). Examples:
• Huffman Compression (today, Project 5)

• Computing shortest paths in networks/graphs

2. Sometimes the greedy algorithm is not
optimal, but still works well in practice

3. A greedy algorithm is typically easy to start
with for optimization problems.

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 21

Aside: What is Machine Learning?

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 22

20

21

22

3/25/2024

8

Aside continued – How do you
“learn a model” greedily?

• Often (in deep learning) represent a
model with a neural network.

• Learn model: optimize parameters of
network on data.

• How to optimize the parameters?

• Greedy algorithm called gradient
descent

• At each step, make a small change
that best improves model
performance

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 23

Huffman Coding
Topic of Project 5: Huffman

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 24

Huffman Compression

• Zip • Unicode • JPEG • MP3

Huffman compression used in all of these and more!

Representing data with bits: Preferably fewer bits

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 25

23

24

25

3/25/2024

9

Encoding

• Eventually, everything stored as bit
sequence: 011001011…

• Fixed length encoding

• Each value has a unique bit
sequence of the same length stored
in a table.

• With 𝑁 unique values to encode,
need ⌈log2 𝑁 ⌉ bits per value.

• E.g., with 8 characters, need 3 bits
per character.

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 26

Optimizing Encoding?

• Suppose we have three characters {a, b, c}:
• a appears 1,000,000 times
• b and c appear 50,000 times each

• Fixed length encoding uses 2,200,000 bits:
• ⌈log2 3 ⌉ = 2 bits per character
• 2 bit/char * 1,100,000 chars = 2,200,000 bits

• Variable length encoding: Use fewer bits to encode more
common values, more bits to encode less common
values.
• What if we encode: a = 1, b = 10, c = 11?
• Only uses 1,200,000 bits.

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 27

Decoding Fixed Length

• Fixed Length with length k

• Every k bits, look up in table

• 001 001 010 110

• 001 → o

• 001 → o

• 010 → p

• 110 → s

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 28

26

27

28

3/25/2024

10

Decoding Variable Length

• What if we use

• a = 1
• b = 10

• c = 11

• How would we decode 1011?

• “baa” or “bc?”

• Problem: Encoding of a (1) is a prefix of the
encoding for c (11). Ambiguous!

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 29

Prefix Property:
Encoding as a Tree

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 30

Convention: 0 for
left and 1 for

right

Encoding is the
sequence of 0’s and

1’s on root to leaf
path

Values you want to
encode are leaves:

Ensures prefix
property.

Values deeper in tree
encoded with more bits
than those earlier in the

tree.

Huffman Coding

• Greedy algorithm for building an optimal variable-
length encoding tree.

• High level idea:
• Start with the leaves/values you want to encode

with weights = frequency. Then repeat until all
leaves are in single tree:

• Greedy step: Choose the lowest-weight nodes to
connect as children to a new node with weight =
sum of children.

• Implementation? Priority queue!

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 31

29

30

31

3/25/2024

11

Visualizing the Algorithm

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 32

Encoding the text “go go gophers”

P5 Outline

1. Write Decompress first

• Takes a compressed file (we give you some)

• Reads Huffman tree from bits

• Uses tree to decode bits to text

2. Write Compress second

• Count frequencies of values/characters

• Greedy algorithm to build Huffman tree

• Save tree and file encoded as bits

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 34

Diameter Problem

leetcode.com/problems/diameter-of-binary-tree

Calculate the diameter of a binary tree, the length
of the longest path (maybe through root, maybe
not, can’t visit any node twice).

3/25/2024 CompSci 201, Spring 2024, Greedy & Huffman 35

5

3 6

2 4

6

3

2 4

1 5

Diameter 3

Diameter 4 Live Coding

32

34

35

https://leetcode.com/problems/diameter-of-binary-tree

