| 20: Binary Heaps

Alex Steiger
CompSci 207: Spring 2024
3/27/2024

People in CS: Clarence “Skip” Ellis

« Born 1943 in Chicago. PhD in CS
from UIUC in 1969

e First African American in US
to complete a PhD in CS

« Founding member of the CS
department at U. Colorado, also
worked in industry.

 Developing original graphical : 3
user interfaces, object- E =

oriented programming, "People put together an image of
Prog S what | was supposed to be,” he

collaboration tools. recalled. “So | always tell my
students to push.”

Read more here

3/29/23 Compsci 201, Spring 2023, L20: Binary 5
Heaps

https://cs.illinois.edu/about/awards/alumni-awards/alumni-awards-past-recipients/clarence-ellis

Logistics, Coming up

« Today, Wednesday 3/29
« APT 7 due

* Next Monday, 4/3
« Nothing due, start on P5 Huffman

« Next Wednesday, 4/5
 APT 8 due

oday's agenda

* Wrap up Huffman Coding Intro

* Priority Queue revisited
« Implementations, especially binary heap

Huffrman Compression

Representing data with bits: Preferably fewer bits

™
o

* Unicode « JPEG « MP3

LRI e

unicode

Huffman compression used in all of these and more!

3/29/23 Compsci 201, Spring 2023, L20: Binary
Heaps

Decoding Variable Length

« What if we use

oa:’
e b=10
e Cc=1T

« How would we decode 10117
* "baa” or "bc?”

 Problem: Encoding of a (1) is a prefix of the
encoding for ¢ (11). Ambiguous!

Prefix Property:
Encoding as a Tree

Convention: 0 for
left and 1 for
right

Values you want to
encode are leaves:
Ensures prefix
property.

Encoding is the
sequence of 0's and
1's on root to leaf Values deeper in tree
path encoded with more bits
than those earlier in the

tree.

CompSci 201, Spring 2024, Greedy &

3/25/2024 Huffman

Decoding bits using Huffman tree

Goal: Decode 10017011 assuming it was encoded with
this tree.

char binary
10

11
0100
0101
0110
0111
000
001

I M N = =T o)

» Read bit at a time, traverse left or right edge.

« When you reach a leaf, decode the character, restart at
root.

Decoding bits using Huffman tree

Decode 10011011

] Initialize at root

char binary
10

11
0100
0101
0110
0111
000
001

B -l)

Decoding bits using Huffman tree

Decode 10071071
!
right child

char binary

'g' 10

'0' 11

P 0100

h 0101

e 0110

¢ 0111

g 000

i 001

3/29/23 Compsci 201, Spring 2023, L20: Binary 0

Heaps

Decoding bits using Huffman tree

Decode 10011011

char binary

B -l)

10

11
0100
0101
0110
0111
000
001

I

Read 0, go to
left child

0 1

T G
) O
(») () () ()

Decoding bits using Huffman tree

Decode 10071011
g
restart at root
char binary
10
11
0100
0101
0110
0111

000
001

B -l)

Decoding bits using Huffman tree

Decode 100717071
o |
left child
char binary
10
11
0100
0101
0110
0111

000
001

B -l)

Decoding bits using Huffman tree

Decode 100711011

g I‘ Read 1, go to
right child

char binary
10
11
0100
0101
0110
0111
000
001

R

Compsci 201, Spring 2023, L20: Binary 14

3/29/23
Heaps

Decoding bits using Huffman tree

Decode 10011011

g I‘ Read 1, go to
right child

char binary
10
11
0100
0101
0110
0111
000
001

R

Compsci 201, Spring 2023, L20: Binary 15
Heaps

3/29/23

Decoding bits using Huffman tree

Decode 1007170171
o 1
left child
char binary
10
11
0100
0101
0110
0111

000
001

B -l)

Decoding bits using Huffman tree

Decode 10071011
ge l
char binary
10
11
0100
0101
0110
0111

000
001

B -l)

Decoding bits using Huffman tree

Decode 10011011

ge

char binary
10
11
0100
0101
0110
0111
000
001

R

3/29/23

I

Read 1, go to
right child

Compsci 201, Spring 2023, L20: Binary
Heaps

18

Decoding bits using Huffman tree

Decode 10011011

ge

char binary
'g' 10
'0' 11
'p' 0100
'h' 0101
el 0110
r! 0111
's' 000
& 001
3/29/23

I‘ Read 1, go to
right child

Compsci 201, Spring 2023, L20: Binary
Heaps

19

Decoding bits using Huffman tree

Decode 10071 1011

l

char binary
10

11
0100
0101
0110
0111
000
001

B -l)

Huffman Coding

* Greedy algorithm for building an optimal variable-
length encoding tree.

 High level idea:

« Start with the leaves/values you want to encode
with weights = frequency. Then repeat until all
leaves are in single tree:

* Greedy step: Choose the lowest-weight nodes to
connect as children to a new node with weight =
sum of children.

* Implementation? Use a priority queue!

Visualizing the greedy algorithm

Encoding the text "go go gophers”

@ char binary
'g' 00
'0' 01
p 1110
'h' 1101
'e! 101
{ ¢ 1111
's' 1100
1 1. 1 > b
Compsci 201, Spring 2023, L20: Binary 2

3/29/23

Heaps

L20-WOTO1-Huffman-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetlD * [T}

solutions

2

Given the Huffman coding tree shown, what is the
decoded text corresponding to the compressed bit
sequence “1101 0111 1111 0010 1"?

These bits have been shown in blocks of 4 for
readability; that does not mean each 4 bits codes for
a single character. * [,

horse

Given these frequencies, how long will the encoding 30
for 'a’' be? How long will the encoding for 'b' be? * 20

09
10

15
40

3
d
b
C
d
e

() "a'-> 1bit,'b' -> 1 bit
O ‘a' -> 1 bits, 'b' -> 2 bits

@ a' -> 2 bits, 'b' -> 2 bits

() "a'-> 2 bits, 'b' -> 3 bits
O ‘a' -> 3 bits, 'b' -> 3 bits

O 'a' -> 3 bits, 'b' -> 4 bits

4

Suppose you are compressing a document with N total characters and M unique characters.
How many nodes will there be in the Huffman coding tree? * [1}

O oMy

@® om

() ON +m)
(O O(N log(N))
(O oM log(M))
() omnr2)
() omr2)

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

P5 Qutline

1. Write Decompress first
« Takes a compressed file (we give you some)
« Reads Huffman tree from bits
» Uses tree to decode bits to text

2. Write Compress second
« Count frequencies of values/characters
» Greedy algorithm to build Huffman tree
» Save tree and file encoded as bits

Priority Queues
Revisited,
Binary Heaps

java.util.PriorityQueue Class

» Kept in sorted order, smallest out first

* Objects must be Comparable OR provide
Comparator to priority queue

PriorityQueue<String> pq = new PriorityQueue<>(); PriorityQueuve<String> pg = new PriorityQueue<>(
pg.add("is"); Comparator.comparing(String::length));

pg.add("Compsci 201"); pg.add("is");
pg.add("wonderful"); pg.add("Compsci 201");
while (! pq.isEmpty()) { pg.add("wonderful");

System.out.println(pq.remove()); white (! pg.isEmpty()) {
System.out.println(pqg.remove());

}
}
Compsci 201 is
is wonderful
wonderful Compsci 201
Compsci 201, Spring 2023, L20: Binary 26

3/29/23
Heaps

Java.util PriorityQueue basic
methods

Method Behavior Runtime
Complexity

add(element) Add an element to the priority O(log(N))
queue comparisons
remove () Remove and return the minimal O(log(N))
element comparisons
peek() Return (do *not* remove) the O(1)

minimal element
size() Return number of elements O(1)

Compsci 201, Spring 2023, L20: Binary

3/29/23
Heaps

27

Binary Heap at a high level

A binary heap is a binary tree

satistying the following structural (1)
Invariants:

* heap property: every node is less O O
than or equal to its successors, and 0 @ @ °

 shape property: the tree is complete (5) ()
(full except possibly last level, in

By Vikingstad at English Wikipedia - Transferred from

which case it should be filled from e rrons ool e ke

https://commons.wikimedia.org/w/index.php?curid=3504

left to right)

How are binary heaps typically

Implementeq?

« Normally think about a conceptua
underlying the binary heap.

 Usually implement with an array

binary tree

By Vikingstad at English Wikipedia - Transferred from
en.wikipedia to Commons by LeaW., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3504
273

« minimizes storage (no explicit points/nodes)
» simpler to code, no explicit tree traversal

« faster too (constant factor, not asymptotically)---
children are located by index/position in array

Aside: How much less memory?

 Storing an int takes 4 bytes = 32 bits on most
machines.

« Storing one reference to an object (a memory
location) takes 8 bytes = 64 bits on most machines.

 For a heap storing N integers...
 Array of N integers takes ~ 4N bytes.

 Binary tree where each node has an int, left, and right
reference takes ~20N bytes.

« SO0 maybe a 5x savings in memory (just an
estimate). Not an asymptotic improvement.

Using an array for a Heap

« Makes it easy to keep track of last “node” in “tree’
* |Index positions in the tree level by level, left to right:

« Last nodein the heap is always just the largest non-
empty index

« Can use indices to represent as an array!
(ArrayList if you
6 (10 |7 |17 (13 | 9 |21 |19 |25
01 2 3 4 5 6 7 8 9 10 growable)

3/29/23 Compsci 201, Spring 2023, L20: Binary
Heaps

31

Properties of the Heap Array

Store “node values” in

array beginning at index 1 s 1017 1713 19 127 70 los

« (Could 0-index, Zybook 01 2 3 4 5 6 7 8 9 10
does this

Last "node” is always at

the max index

Minimum “node” is
always at index 1

« How about add?
« Remove?

Relating Nodes in Heap Array

« When T-indexing: For

node with index Kk 6 (107 1713 | 9 |21 |19 |25

« left child: index 2*k 01 2 3 4 5 6 7 8 910
+ right child: index

* parent:index k/2 |

« Why? Follows from: TPepth ! TG Gy
 Heap is complete, and Depth 2. |

e Complete binarytreehas _____________ A
2d nodes at depth d Depth 3 8

(except lastlevel) TR e

Compsci 201, Spring 2023, L20: Binary 13

3/29/23 Heaps

Adding values to heap in pictures
(&
« Add to first open position @
in last level of the tree @ B @
« (really, add to end of & insert &
array) g

« Shape property satisfied,
but not heap property 0 bubble 8 up
« Fix it: Swap with parent if “
heap property violated ~ @@ @@
« Stop when parent is /‘\‘\.

smaller,

e Oryoureach the root
Heap property
3/29/23 Compsci 201, Spring 2023, L20: Binary re-established 5

Heaps

Heap add implementation

24 public void add(Integer value) {
@ 25 heap.add(value); // add to last position

26 size++;
CD@@ B
@ 28 int index = size; // note we are l-indexing

@ @@ 29 int parent = index / 2;
30
31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {
32 swap(index, parent);
33 index = parent;
34 parent /= 2;
35 }
36 }

6 |10|7 (17|13 | 9|21|19(25|8
01 2 3 45 6 7 8 910

ArrayList<integer> heap

Compsci 201, Spring 2023, L20: Binary

Heaps 9

3/29/23

Heap add implementation

24 public void add(Integer value) {

@ 25 heap.add(value); // add to last position
@ 0 26 size++;
ORI | o
28 int index = size; // note we are l-indexing
@ @@ 29 int parent = index / 2;
30
31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {
@ 32 swap(index, parent);

@ e 33 index = parent;
4 34 parent /= 2;
1D @ @ @ }

6 (107 (17(8 | 9(21|19(25|13
01 2 3 4 5_6 7 8 910

ArrayList<integer> heap

Compsci 201, Spring 2023, L20: Binary

Heaps 9

3/29/23

Heap add implementation

24 public void add(Integer value) {

@ 25 heap.add(value); // add to last position
@ 0 26 size++;
D BO @
28 int index = size; // note we are l-indexing
@ @@ 29 int parent = index / 2;
30
31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {
@ 32 swap(index, parent);
@ e 33 index = parent;
@ 9 @ @ 34 parent /= 2;
35 }
19 2973 N
(6) 6 (8|7 |17\710] 9(21|19|25|13

@ 01 2 3 4 5 6 7 8 9 10
m@
OYDE

3/29/23

ArrayList<integer> heap

Compsci 201, Spring 2023, L20: Binary

Heaps 3/

Heap remove In pictures
- Always return root value ‘
10
« How to repair shape into @ @@
a single tree? @ (7

Replace root with last
node in the heap D

| ® © @
While heap property @
violated, swap with D
smaller child. (10)
[® @ @

38
39
49
41
42
43
44

Heap remove implementation

public Integer remove() {

1f (size < 1) { return null; } -
Integer retVal = heap.get(index:1);

heap.set(index:1, heap.get(size));‘<:{

Replace "root” J

heap.remove(size); il e FodeE

size--; ‘<1Dekﬂeﬂastnodé
1f (size == 0) { return retVal; }

(25
g;)@@ _® e@

B 70

17113 | 9 121 |19 |25 25(10 |7 |17 13 | 9 |21 |19

1 2

3/29/23

4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10
Compsci 201, Spring 2023, L20: Binary 19

Heaps

46
47
438
49
50
51
52
53
54
55

Heap remove implementation

int minChild = 2;
1f (size > 2 && heap.get(index:3) < heap.get(index:2)) { minChild = 3; }
while (minChild <= size && heap.get(index) > heap.get(minChild)) {
swap(index, minChild);m Violating heap
1hdex.= m1nCh11d§ oropert
minChild = minChild * 2;
if (size > minChild && heap.get(minChild + 1) < heap.get(minChild)) { minChild++; }
;)
return retvVal;
25|10 17 (13 21 (19 I 10 | 25|17 |13 21 (19
01 2 3 4 5 7 8 10 01 2 3 4 5 7 8 9 10
3/29/23 Compsci 201, Spring 2023, L20: Binary 40

Heaps

46
47
48
49
50
51
52
53
54
55

Heap remove implementation

int index = 1;

int minChild = 2;

1f (size > 2 && heap.get(index:3) < heap.get(index:2)) { minChild = 3; }

while (minChild <= size && heap.get(index) > heap.get(minChild)) {

swap(index, minChild);
index = minChild;

minChild = minChild * 2;

}

return retVal;

Heaps

| IEEEE |

if (size > minChild && heap.get(minChild + 1) < heap.get(minChild)) { minChild++; }

7 (10 | 25|17 13 | 8 |21 |19 7 |10 17 13 | 25|21 (19
1 2 3 4 5 7 8 9 10 01 2 4 5 6 7 8 9 10
3/29/23 Compsci 201, Spring 2023, L20: Binary 41

46
47
48
49
50
51
52
53
54
55

Heap remove implementation

int index = 1;
int minChild = 2;

1f (size > 2 && heap.get(index:3) < heap.get(index:2)) { minChild = 3; }
while (minChild <= size && heap.get(index) > heap.get(minChild)) {

jn__ B

swap(index, minChild);

index = minChild;

minChild = minChild * 2;
if (size > minChild && heap.get(minChild + 1) < heap.get(minChild)) { minChild++; }

}

return retVal;

R

@ @

10

9

17

13

25

21

19

3/29/23

2

3

4

Compsci 201, Spring 2023, L20: Binary
Heaps

5

6

7

8

9 10

42

Heap Complexity

 Claimed that:
« Peek: O(1)
« Add: O(log(N))
« Remove: O(log(N))
* On a heap with N values. Why?
» Peek: Easy, return first value in an Array
« Complete binary tree always has height O(log(N)).

 .add and remove “traverse” one root-leaf path, length
at most O(log(N)).

decreaseKey Operation?

©
Suppose we decrease the (10,
13 to 5. ‘E@@ B © @

Violates heap property (&
e (10
Fix like in the add @ B @ G

operation: (39 (25)
While violating heap (6)
property, swap with parent (5)

@ ®

19 23

D
@
@ @ @ @&

19 @»

decreaseKey NOT in java.util

 decreaseKey is important for some algorithms, but
not supported in many standard libraries (including
the java.util.PriorityQueue)

« Why not?
« Note that binary heap does not support efficient
search

« In order to do decreaseKey in O(log(n)) time, need to
store references/indices of all the "nodes.”

« Adds overhead, not done in java.util

Alternative Implementation:
Binary Search Tree

* |f your keys happen to be unique...

 Can support O(log(n)) add & remove (smallest)
using a binary search tree!

« Smallest is leftmost child

Compsci 201, Spring 2023, L20: Binary

3/29/23
Heaps

47

PriorityQueue (with unique keys)
using a java.util TreeSet

import java.util.TreeSet;

public class BSTPQ<T extends Comparable<T>> {
private TreeSet<T> bst;

public BSTPQ() { bst = new TreeSet<>(); }

public void add(T element) { bst.add(element); }
public int size() { return bst.size(); }

public T peek() { return bst.first(); }

first gives smallest
element in TreeSet in
O(log(n)) time

public T remove() {
T returnValue = bst.first();
bst.remove(returnValue);
return returnValue;

} Can decreaseKey by
removing and then re-adding,
public void decreaseKey(T oldKey, T newKey) { both O(log(n)) time for a

bst.remove(oldKey); TreeSet
bst.add(newKey);

3/29/23 Compsci 201, Spring 2023, L20: Binary
} Heaps

48

Disadvantages to using a Binary
Search Tree for your priority queue?

1. All elements must be unique

2. Not array-based, uses more memory and has
higher constant factors on runtime

3. Much harder to implement with guarantees that
the tree will be balanced.

