L20: Binary Heaps

Alex Steiger

CompSci 201: Spring 2024

3/27/2024

People in CS: Clarence “Skip” Ellis

* Born 1943 in Chicago. PhD in CS
from UIUC in 1969
« First African American in US
to complete a PhD in CS

» Founding member of the CS
department at U. Colorado, also
worked in industry.

+ Developing original graphical
user interfaces, object-
oriented programming,
collaboration tools.

Read more here

£ /.
“People put together an image of
what | was supposed to be,” he
recalled. “So | always tell my
students to push.”

Logistics, Coming up

» Today, Wednesday 3/29
* APT 7 due

« Next Monday, 4/3

» Nothing due, start on P5 Huffman

» Next Wednesday, 4/5
* APT 8 due

3/27/2024

https://cs.illinois.edu/about/awards/alumni-awards/alumni-awards-past-recipients/clarence-ellis

Today's agenda

» Wrap up Huffman Coding Intro

« Priority Queue revisited
« Implementations, especially binary heap

Huffran Compression

Representing data with bits: Preferably fewer bits

+ Unicode JPEG

umco;e

Huffman compression used in all of these and more!

Decoding Variable Length

« What if we use
ca=1
*b=10
ec=11

* How would we decode 10117
* "baa” or "bc?”

* Problem: Encoding of a (1) is a prefix of the
encoding for ¢ (11). Ambiguous!

3/27/2024

Prefix Property:
Encoding as a Tree

char binary

g Convention: 0 for

o' leftand 1 for
right

P 0100

W' 0101

‘et 0110

bl o111

o 000 Values you want to

encode are leaves:
001 Ensures prefix
property.

Encoding is the
sequence of 0's and
1's on root to leaf Values deeper in tree
path encoded with more bits

than those earlier in the

S

Decoding bits using Huffman tree

Goal: Decode 10011011 assuming it was encoded with
this tree.

char binary
g 10
o 1
P 0100
w0101
e 0110
ol
s 000
o0l

 Read bit at a time, traverse left or right edge.

« When you reach a leaf, decode the character, restart at
root.

Decoding bits using Huffman tree

Decode 10011011
char binary
g 10
o' 11
p 0100
W 0101
e 0110
¢ o1l
0y 000
0 001

3/27/2024

10

11

12

Decoding bits using Huffman tree

Decode 10011011
right child
char binary
‘g 10
‘o' 11
P 0100
'h' 0101
' 0110
i o111
Y 000
L 001

Decoding bits using Huffman tree

Decode 10011011
Read 0, go to
left child
char binary
‘g 10
‘o' 11
P 0100
'h' 0101
‘¢! 0110
5l 0111
's' 000
O 001

Decoding bits using Huffman tree

Decode 10011011
g

char binary
‘g 10
o 11
P 0100
W 0101
e 0110
¥ 0lll
0y 000
o) 001

3/27/2024

13

14

15

Decoding bits using Huffman tree

Decode 10011011
Read 0, go

9 - '\2?1 v
char binary

g 10

o 11

P 0100

W 0101

e 0110

v o111

5 000

2 001

Decoding bits using Huffman tree

Decode 10011011

o |
right child
char binary
‘g 10
‘o' 1
P 0100
'h' 0101
‘¢! 0110
i) 0111
's' 000
O 001

Decoding bits using Huffman tree

Decode 10011011

I Read 1, go to
g
char binary
10
11
0100
0101
0110
0111
000
001

A R

3/27/2024

16

17

18

Decoding bits using Huffman tree

Decode 10011011
Read 0, g

9 I - '\2?1 v
char binary

g 10

o 11

P 0100

W 0101

e 0110

v o111

5 000

2 001

Decoding bits using Huffman tree

Decode 10011011
ge L;ft‘art 1'11’13"”;
char binary

g 10

‘o' 11

' 0100

' 0101

‘et 0110

i) 0111

‘s 000

s 001

Decoding bits using Huffman tree

Decode 10011071

e
ge I
char binary
10
11
0100
0101
0110
0111
000
001

A R

3/27/2024

Decoding bits using Huffman tree

Decode 10011011
o I
char binary

g 10

o 11

P 0100

W 0101

e 0110

Se) 0111

3 000

2 001

19

Decoding bits using Huffman tree

Decode 1001 1011

geo Leaf, decode 0’
char binary
g 10
‘o' 11
' 0100
' 0101
‘et 0110
i) 0111
‘s 000
s 001

20

Huffman Coding

* Greedy algorithm for building an optimal variable-
length encoding tree.

« High level idea:

« Start with the leaves/values you want to encode
with weights = frequency. Then repeat until all
leaves are in single tree:

* Greedy step: Choose the lowest-weight nodes to
connect as children to a new node with weight =
sum of children.

* Implementation? Use a priority queue!

21

3/27/2024

3/27/2024

Visualizing the greedy algorithm

Encoding the text “go go gophers”

char binary
g 00
‘o' 01
'p' 1110
'h' 1101
‘e 101
'r 1111
's' 1100
v 100

22

P5 Qutline

1. Write Decompress first
« Takes a compressed file (we give you some)
« Reads Huffman tree from bits
« Uses tree to decode bits to text

2. Write Compress second
« Count frequencies of values/characters
« Greedy algorithm to build Huffman tree
« Save tree and file encoded as bits

24

Priority Queues
Revisited,
Binary Heaps

25

L20-WOTO1-Huffman-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetlD * [T}

solutions

2

Given the Huffman coding tree shown, what is the
decoded text corresponding to the compressed bit
sequence “1101 0111 1111 0010 1"?

These bits have been shown in blocks of 4 for
readability; that does not mean each 4 bits codes for
a single character. * [,

horse

Given these frequencies, how long will the encoding 30
for 'a’' be? How long will the encoding for 'b' be? * 20

09
10

15
40

3
d
b
C
d
e

() "a'-> 1bit,'b' -> 1 bit
O ‘a' -> 1 bits, 'b' -> 2 bits

@ a' -> 2 bits, 'b' -> 2 bits

() "a'-> 2 bits, 'b' -> 3 bits
O ‘a' -> 3 bits, 'b' -> 3 bits

O 'a' -> 3 bits, 'b' -> 4 bits

4

Suppose you are compressing a document with N total characters and M unique characters.
How many nodes will there be in the Huffman coding tree? * [1}

O oMy

@® om

() ON +m)
(O O(N log(N))
(O oM log(M))
() omnr2)
() omr2)

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

java.util.PriorityQueue Class

« Kept in sorted order, smallest out first

* Objects must be Comparable OR provide
Comparator to priority queue

PriorityQueve<String> pg = new PrierityQueve<s(); PriorityQueve<string> pq = new PriorityQueve<s(

pq.add("is");
pg.add("Conpscd 201");
PQ.add("wongertul=);
while (! po.isEmpty()) {

Comparatar. comparing(String: :lengtn));
pa.add("is");

py.add("Compsci 201");

pa.s0a("wongertul");

Systen.out.printin(pq.renove()); while (1 pq.isEmpty()) {

}
Compsci 201
is
wonderful

26

Systen.out.println{pa.remove());

}
is
wonderful
Compsci 201

java.util PriorityQueue basic

methods

Method Behavior Runtime
Complexity

add(element)
remove()

peek()

size()

27

Add an element to the priority O(log(N))
queue comparisons
Remove and return the minimal O(log(N))
element comparisons
Return (do *not* remove) the o(1)

minimal element

Return number of elements o(1)

Binary Heap at a high level

Abinary heap is a binary tree

satisfying the following structural

invariants:

« heap property: every node is less) AN
than or equal to its successors, and @ DRONO)

- shapeproperty: the tree is complete @)’ @

(full except possibly last level, in
which case it should be filled from

left to right)

28

3/27/2024

3/27/2024

How are binary heaps typically
implemented?

+ Normally think about a conceptual binary tree
underlying the binary heap. . u

« Usually implement with an array
» minimizes storage (no explicit points/nodes)
« simpler to code, no explicit tree traversal

- faster too (constant factor, not asymptotically)-—-
children are located by index/position in array

29

Aside: How much less memory?

« Storing an int takes 4 bytes = 32 bits on most
machines.

« Storing one reference to an object (a memory
location) takes 8 bytes = 64 bits on most machines.

« For a heap storing N integers...
« Array of N integers takes ~ 4N bytes.
« Binary tree where each node has an int, left, and right
reference takes ~20N bytes.
» So maybe a 5x savings in memory (just an
estimate). Not an asymptotic improvement.

30

Using an array for a Heap

» Makes it easy to keep track of last “node” in “tree”
 Index positions in the tree level by level, left to right:

Depth 0 ;(@\
Depth 1 2 10
Depth 2 @ 5(19) @ o)
DepthS .
+ Last node in the heap is alwaySJust the largest non-
empty index

» Canuse indices to represent as an array! "
(ArrayList if you
[T [o]7 [17fiz [9]21]rs]2s]]
01 2 345 678 910 growable)

31

10

Properties of the Heap Array

+ Store “node values” in
array beginning atindex 1 [T [ia[7 [i7a [1]9 25| |

+ Could O-index, Zybook 01 2 3 45 6 7 8 910
does this
+ Last "node” is always at 1
the max index Depth 0 /GD\

* Minimum “node” is Depth 1 O

2(10
always at index 1 Depth 2 @ @ @

+ peek s easy, return first Depth 3 e(19) o(zs

value.
* How about add?
« Remove?

32

Relating Nodes in Heap Array

* When T-indexing: For
node with index k [[6Jio]7 [17hs [o [21]ro]2s] |
+ left child: index 2*k o1 2 3 4s e T8 s

- right child: index

. il k/2
parent: index k/ Depth 0 /WGD\
* Why? Follows from: “5¢5r7 ONIEO
* Heap is complete, and

Depth 2 @ @ @
+ Complete binary tree has P y 5@ 6 /

29 nodes at depth d Depth 3 @ o25
(except last level)

33

Adding values to heap in pictures

« Add to first open position
in last level of the tree
« (really, add to end of @ @ insens
array) 0 @ 0 &
» Shape property satisfied,
but not heap property bubble8up
« Fix it: Swap with parent if @ 9
heap property violated ©® B
* Stop when parent is £ Oo@
smaller, @ ® 2

« oryou reach the root
Heap property
re-established

@

34

3/27/2024

11

Heap add implementation

24 public void add(Integer value) {

® 25 heap.add(valued; // add to last position
@ o 76 sizest;
int index = size; // note we are 1-indexing

v @e»® 29 int parent = index / 2;

30

31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {
32 swaplindex, parent);

3 index = parent;

34 parent /= 2;

35 }

36

[[e]ro]7[17}13] o]21]19]25]s |
01 2 3 45 6 7 8 910

ArrayList<Integer>heap m

35

Heap add implementation

24 public void add(Integer value) {

® 25 heap.add(valued; // add to last position
@ o 76 sizest;
int index = size; // note we are 1-indexing

a9 @® 29 int parent = index / 2;

31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {
® 32 swop(index, parent);
@ o 33 index = parent;
O RORD 34 | parent /= 2;

[[e]ro]7]17]8 [o]21]13]25]13]
01 2 3 45 _6 7 8 910

ArrayList<Integer>heap

36

Heap add implementation

2 public void odd(Integer volue) {
O 25 heap.add(value); // add to last position

an @) 26 sizes+;

int index = size; // note we are l-indexing

a9 d® 29 int parent = index / 2;

31 while(parent >= 1 & heap.get(parent) > heap.get(index)) {
32 swop(index, parent);

TNB e - porne
33 index = parent;
@ ®O@® . o, T
&)

® [[s]8]7]17]10] a]21]1]25] 14
0 o 01 2 3 45 6 7 8 910

" 0o 4 g
@ a3 ﬁ ArrayList<integer>heap

37

3/27/2024

12

Heap remove in pictures
+ Always return root value
+ How to repair shape into ‘ @® 0 @
a single tree? ﬁ:}
* Replace root with last

node in the heap

Wiy

» While heap property
violated, swap with
smaller child.

38

Heap remove implementation

38 public Integer remove() {
39 if (size < 1) { return null; } -
40 Integer retVal = heap.get(index:1);

41 heap.set(index:1, heap.get(size)); RErETooT
- heap. renove(size); q . with “last node”
43 size--; Delete “last node
“ if (size == @) { return retVal; }

L5t

[[8[0]7 [17hs o [21]r19]es] | \25\10\7 [17hs]o]a1]rs] | |

01 2 3 4 5 6 7 8 910 01 2 3 4 5 6 7 8 910
). Bina

39

Heap remove implementation

46 int index = 1;
47 int minChild = 2;
48 if (size > 2 & heap.get(index:37 < heap.get(index:2)) { minChild = 3; }

49 while (minChild <= size && heap.get(index) » heap.get(minChild)} {
5@ swap(index, minChild); m Violating heap
51 index = minChild; propert

52 minChild = minChild * 2;

53 if (size > minChild && heap get(minChild + 1) < heap.get(minChild)) { minChild++; }

54
55 return retval;

m@ow —}

\25\10 [2 [17fa]9]z1]rs]] []z \10 [25]17fi3 [9]21]19] |
01 2 3 4 5 6 7 8 9 lD 01 2 3 45 6 7 8 9 10

40

3/27/2024

13

46
47
48
49
58
51
52
53
54

Heap remove implementation

int index = 1;
int minChild = 2;
if (size > 2 && heap.get(index:3) < heap.get(index:2)) { minChild = 3; }
while (minChild <= size & heap.get(index) > heap.get(minChild)) {
swap(index, minChild);
i = i, [Updtermnchid |
minChild = minChild * 2;

£ (size > minChild && heap.get(minChild + 1) < heap.get(minChild)) { minChild++; }

"‘@5!?'

[7 \m [25]17 13 8 [21]19] | \7 \1o\| \17\13 2421 \19\

0

41

42

43

12345678910 4 6 910
w

Heap remove implementation

int index = 1;
int minChild = 2;
if (size > 2 8& heap.get(index:3) < heap.get(index:2)) { minChild = 3; }
while (minChild <= size && heap.get(index) > heap.get(minChild)) {
swap(index, minChild);
o i (e |
minChild = minChild * 2;
£ (size > minChild && heap.get(minChild + 1) < heap.get(minChild)) { minChild++; }
i

return retVal; @ ° o
@ @ ® @
@9

\ \7\10\9 \17\13\2#21\19\ []
2 3 4 5 6 8 9 10
): Bina

Heap Complexity

« Claimed that:
« Peek: O(1)
+ Add: O(log(N))
» Remove: O(log(N))
* On a heap with N values. Why?
» Peek: Easy, return first value in an Array
« Complete binary tree always has height O(log(N)).

« .add and remove “traverse” one root-leaf path, length
at most O(log(N)).

3/27/2024

14

47

46

decreaseKey Operation?
@&
« Suppose we decrease the a0 @)
13t05. B2 ERORD)
« Violates heap property O)
RN €
« Fix like in the add @ ® @ o
operation: a @
While violating heap @®
property, swap with parent &) @)
1 @ @ @
@ @
O) @)
@ W ® @
@ @

45

decreaseKey NOT in java.util

« decreaseKey is important for some algorithms, but
not supported in many standard libraries (including

the java.util. PriorityQueue)
* Why not?

 Note that binary heap does not support efficient
search

« In order to do decreaseKey in O(log(n)) time, need to
store references/indices of all the “nodes.”

+ Adds overhead, not done in java.util

Alternative Implementation:
Binary Search Tree
« If your keys happen to be unique...

« Can support O(log(n)) add & remove (smallest)
using a binary search tree!

» Smallest is leftmost child

X y
N 12
P —
9 _6_7_

3/27/2024

15

PriorityQueue (with unique keys)
using a java.util TreeSet

import java.util.TreeSet;

public class BSTPQ<T extends Comparable<T>> {

48

49

private TreeSet<T> bst;

public BSTPQ() { bst = new TreeSet<>(); }
public void add(T element) { bst.add(element); }
publicint size() { return bst.size(); }

public T peek() { return bst.first(); } first gives smallest
. element in TreeSet in
public T remove() { 0(log(n)) time
T returnValue = bst.first(); g

bst.remove(returnValue);
return returnValue;

Can decreasekey by
removing and then re-adding,
both O(log(n)) time for a
TreeSet

}

public void decreaseKey(T oldKey, T newKey) {
bst.remove(oldKey);
bst.add(newKey);

Disadvantages to using a Binary
Search Tree for your priority queue?

1. All elements must be unique

2. Not array-based, uses more memory and has
higher constant factors on runtime

3. Much harder to implement with guarantees that
the tree will be balanced.

3/27/2024

16

