
3/27/2024

1

3/25/2024
CompSci 201, Spring 2024, Greedy &

Huffman
1

L20: Binary Heaps
Alex Steiger

CompSci 201: Spring 2024

3/27/2024

People in CS: Clarence “Skip” Ellis

• Born 1943 in Chicago. PhD in CS
from UIUC in 1969

• First African American in US
to complete a PhD in CS

• Founding member of the CS
department at U. Colorado, also
worked in industry.

• Developing original graphical
user interfaces, object-
oriented programming,
collaboration tools.

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
2

“People put together an image of
what I was supposed to be,” he
recalled. “So I always tell my
students to push.”

Read more here

Logistics, Coming up

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
3

• Today, Wednesday 3/29
• APT 7 due

• Next Monday, 4/3
• Nothing due, start on P5 Huffman

• Next Wednesday, 4/5
• APT 8 due

1

2

3

https://cs.illinois.edu/about/awards/alumni-awards/alumni-awards-past-recipients/clarence-ellis

3/27/2024

2

Today’s agenda

• Wrap up Huffman Coding Intro

• Priority Queue revisited
• Implementations, especially binary heap

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
4

Huffman Compression

• Zip • Unicode • JPEG • MP3

Huffman compression used in all of these and more!

Representing data with bits: Preferably fewer bits

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
5

Decoding Variable Length

• What if we use

• a = 1
• b = 10

• c = 11

• How would we decode 1011?
• “baa” or “bc?”

• Problem: Encoding of a (1) is a prefix of the
encoding for c (11). Ambiguous!

3/25/2024
CompSci 201, Spring 2024, Greedy &

Huffman
6

4

5

6

3/27/2024

3

Prefix Property:
Encoding as a Tree

3/25/2024
CompSci 201, Spring 2024, Greedy &

Huffman
7

Convention: 0 for
left and 1 for

right

Encoding is the
sequence of 0’s and

1’s on root to leaf
path

Values you want to
encode are leaves:

Ensures prefix
property.

Values deeper in tree
encoded with more bits
than those earlier in the

tree.

Decoding bits using Huffman tree

Goal: Decode 10011011 assuming it was encoded with
this tree.

• Read bit at a time, traverse left or right edge.

• When you reach a leaf, decode the character, restart at
root.

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
8

Decoding bits using Huffman tree

Decode 10011011

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
9

Initialize at root

7

8

9

3/27/2024

4

Decoding bits using Huffman tree

Decode 10011011

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
10

Read 1, go to
right child

Decoding bits using Huffman tree

Decode 10011011

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
11

Read 0, go to
left child

Decoding bits using Huffman tree

Decode 10011011

g

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
12

Leaf, decode ‘g’,
restart at root

10

11

12

3/27/2024

5

Decoding bits using Huffman tree

Decode 10011011

g

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
13

Read 0, go to
left child

Decoding bits using Huffman tree

Decode 10011011

g

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
14

Read 1, go to
right child

Decoding bits using Huffman tree

Decode 10011011

g

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
15

Read 1, go to
right child

13

14

15

3/27/2024

6

Decoding bits using Huffman tree

Decode 10011011

g

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
16

Read 0, go to
left child

Decoding bits using Huffman tree

Decode 10011011

ge

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
17

Leaf, decode ‘e’,
restart at root

Decoding bits using Huffman tree

Decode 10011011

ge

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
18

Read 1, go to
right child

16

17

18

3/27/2024

7

Decoding bits using Huffman tree

Decode 10011011

ge

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
19

Read 1, go to
right child

Decoding bits using Huffman tree

Decode 1001 1011

geo

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
20

Leaf, decode ‘o’

Huffman Coding

• Greedy algorithm for building an optimal variable-
length encoding tree.

• High level idea:
• Start with the leaves/values you want to encode

with weights = frequency. Then repeat until all
leaves are in single tree:

• Greedy step: Choose the lowest-weight nodes to
connect as children to a new node with weight =
sum of children.

• Implementation? Use a priority queue!

3/25/2024
CompSci 201, Spring 2024, Greedy &

Huffman
21

19

20

21

3/27/2024

8

Visualizing the greedy algorithm

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
22

Encoding the text “go go gophers”

P5 Outline

1. Write Decompress first

• Takes a compressed file (we give you some)

• Reads Huffman tree from bits

• Uses tree to decode bits to text

2. Write Compress second

• Count frequencies of values/characters

• Greedy algorithm to build Huffman tree

• Save tree and file encoded as bits

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
24

Priority Queues
Revisited,
Binary Heaps

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
25

22

24

25

L20-WOTO1-Huffman-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetID *

1

solutions

Given the Huffman coding tree shown, what is the
decoded text corresponding to the compressed bit
sequence "1101 0111 1111 0010 1"?

These bits have been shown in blocks of 4 for
readability; that does not mean each 4 bits codes for
a single character. *

2

horse

'a' -> 1 bit, 'b' -> 1 bit

'a' -> 1 bits, 'b' -> 2 bits

'a' -> 2 bits, 'b' -> 2 bits

Given these frequencies, how long will the encoding
for 'a' be? How long will the encoding for 'b' be? *

3

'a' -> 2 bits, 'b' -> 3 bits

'a' -> 3 bits, 'b' -> 3 bits

'a' -> 3 bits, 'b' -> 4 bits

O(N)

O(M)

O(N + M)

O(N log(N))

O(M log(M))

O(N^2)

O(M^2)

Suppose you are compressing a document with N total characters and M unique characters.
How many nodes will there be in the Huffman coding tree? *

4

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.
Microsoft Forms | AI-Powered surveys, quizzes and polls Create my own form
Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

3/27/2024

9

java.util.PriorityQueue Class

• Kept in sorted order, smallest out first

• Objects must be Comparable OR provide
Comparator to priority queue

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
26

java.util PriorityQueue basic
methods

Method Behavior Runtime
Complexity

add(element) Add an element to the priority
queue

O(log(N))
comparisons

remove() Remove and return the minimal
element

O(log(N))
comparisons

peek() Return (do *not* remove) the
minimal element

O(1)

size() Return number of elements O(1)

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
27

Binary Heap at a high level

A binary heap is a binary tree
satisfying the following structural
invariants:

• heap property: every node is less
than or equal to its successors, and

• shape property: the tree is complete
(full except possibly last level, in
which case it should be filled from
left to right)

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
28

By Vikingstad at English Wikipedia - Transferred from
en.wikipedia to Commons by LeaW., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3504
273

26

27

28

3/27/2024

10

How are binary heaps typically
implemented?

• Normally think about a conceptual binary tree
underlying the binary heap.

• Usually implement with an array
• minimizes storage (no explicit points/nodes)

• simpler to code, no explicit tree traversal

• faster too (constant factor, not asymptotically)---
children are located by index/position in array

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
29

By Vikingstad at English Wikipedia - Transferred from
en.wikipedia to Commons by LeaW., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3504
273

Aside: How much less memory?

• Storing an int takes 4 bytes = 32 bits on most
machines.

• Storing one reference to an object (a memory
location) takes 8 bytes = 64 bits on most machines.

• For a heap storing N integers…
• Array of N integers takes ~ 4N bytes.

• Binary tree where each node has an int, left, and right
reference takes ~20N bytes.

• So maybe a 5x savings in memory (just an
estimate). Not an asymptotic improvement.

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
30

Using an array for a Heap
• Makes it easy to keep track of last “node” in “tree”

• Index positions in the tree level by level, left to right:

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0

Depth 1

Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

• Last node in the heap is always just the largest non-
empty index

• Can use indices to represent as an array!
(ArrayList if you

want it to be
growable)

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
31

29

30

31

3/27/2024

11

Properties of the Heap Array

• Store “node values” in
array beginning at index 1
• Could 0-index, Zybook

does this

• Last “node” is always at
the max index

• Minimum “node” is
always at index 1

• peek is easy, return first
value.

• How about add?

• Remove?

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0

Depth 1

Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
32

Relating Nodes in Heap Array

• When 1-indexing: For
node with index k

• left child: index 2*k

• right child: index 2*k+1

• parent: index k/2

• Why? Follows from:
• Heap is complete, and

• Complete binary tree has
2d nodes at depth d

 (except last level)

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
33

Integer division

6

10 7

17 13 9 21

19 25

Depth 0

Depth 1

Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

Adding values to heap in pictures

• Add to first open position
in last level of the tree

• (really, add to end of
array)

• Shape property satisfied,
but not heap property

• Fix it: Swap with parent if
heap property violated

• Stop when parent is
smaller,

• or you reach the root

13

6

10 7

17 9 21

19 25

13

6

10 7

17 9 21

19 25 8
6

10 7

17 9 21

19 25 13

8

insert 8

bubble 8 up

6

7

17 9 21

19 25

8

13

10

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
34

Heap property
re-established

32

33

34

3/27/2024

12

Heap add implementation

13

6

10 7

17 9 21

19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

ArrayList<Integer> heap

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
35

8

8

index=10
parent=5

Heap add implementation

13

6

10 7

17 9 21

19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 8 259 21 19

ArrayList<Integer> heap

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
36

8

index=5parent=2

8

6

10 7

17 9 21

19 25 13

13

Heap add implementation

13

6

10 7

17 9 21

19 25

0 1 2 3 4 5 6 7 8 9 10

6 8 7 17 10 259 21 19

ArrayList<Integer> heap

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
37

8

index=2

parent=1

8

6

10 7

17 9 21

19 25 13

13

10

6

8 7

17 9 21

19 25 13

35

36

37

3/27/2024

13

Heap remove in pictures
• Always return root value

• How to repair shape into
a single tree?

• Replace root with last
node in the heap

• While heap property
violated, swap with
smaller child.

13

6

10 7

17 9 21

19 25

13

25

10 7

17 9 21

19

13

7

10 25

17 9 21

19

13

7

10 9

17 25 21

19

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
38

Heap remove implementation

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
39

13

6

10 7

17 9 21

19 25

13

25

10 7

17 9 21

19

Get the
minimal value

Replace ”root”
with “last node”

Delete “last node”

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

0 1 2 3 4 5 6 7 8 9 10

25 10 7 17 13 9 21 19

Heap remove implementation

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
40

0 1 2 3 4 5 6 7 8 9 10

25 10 7 17 13 9 21 19

13

25

10 7

17 9 21

19

minChild

0 1 2 3 4 5 6 7 8 9 10

7 10 25 17 13 9 21 19

13

7

10 25

17 9 21

19

Find the smaller of 2 child nodes

Violating heap
property

Swap

38

39

40

3/27/2024

14

Heap remove implementation

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
41

minChild

0 1 2 3 4 5 6 7 8 9 10

7 10 25 17 13 9 21 19

13

7

10 25

17 9 21

19

Update minChild

13

7

10 9

17 25 21

19

0 1 2 3 4 5 6 7 8 9 10

7 10 9 17 13 25 21 19

Heap remove implementation

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
42

2*6 = 12 > size

13

7

10 9

17 25 21

19

0 1 2 3 4 5 6 7 8 9 10

7 10 9 17 13 25 21 19

Return retVal (6)

Heap Complexity

• Claimed that:
• Peek: O(1)

• Add: O(log(N))

• Remove: O(log(N))

• On a heap with N values. Why?
• Peek: Easy, return first value in an Array

• Complete binary tree always has height O(log(N)).

• .add and remove “traverse” one root-leaf path, length
at most O(log(N)).

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
43

41

42

43

3/27/2024

15

decreaseKey Operation?

• Suppose we decrease the
13 to 5.

• Violates heap property

• Fix like in the add
operation:
• While violating heap

property, swap with parent

13

6

10 7

17 9 21

19 25

5

6

10 7

17 9 21

19 25

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
45

10

6

5 7

17 9 21

19 25

10

6

6 7

17 9 21

19 25

decreaseKey NOT in java.util

• decreaseKey is important for some algorithms, but
not supported in many standard libraries (including
the java.util.PriorityQueue)

• Why not?
• Note that binary heap does not support efficient

search

• In order to do decreaseKey in O(log(n)) time, need to
store references/indices of all the “nodes.”

• Adds overhead, not done in java.util

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
46

Alternative Implementation:
Binary Search Tree

• If your keys happen to be unique…

• Can support O(log(n)) add & remove (smallest)
using a binary search tree!

• Smallest is leftmost child

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
47

45

46

47

3/27/2024

16

PriorityQueue (with unique keys)
using a java.util TreeSet

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
48

import java.util.TreeSet;

public class BSTPQ<T extends Comparable<T>> {
 private TreeSet<T> bst;

 public BSTPQ() { bst = new TreeSet<>(); }
 public void add(T element) { bst.add(element); }
 public int size() { return bst.size(); }
 public T peek() { return bst.first(); }

 public T remove() {
 T returnValue = bst.first();
 bst.remove(returnValue);
 return returnValue;
 }

 public void decreaseKey(T oldKey, T newKey) {
 bst.remove(oldKey);
 bst.add(newKey);
 }
}

first gives smallest
element in TreeSet in

O(log(n)) time

Can decreaseKey by
removing and then re-adding,

both O(log(n)) time for a
TreeSet

Disadvantages to using a Binary
Search Tree for your priority queue?

1. All elements must be unique

2. Not array-based, uses more memory and has
higher constant factors on runtime

3. Much harder to implement with guarantees that
the tree will be balanced.

3/29/23
Compsci 201, Spring 2023, L20: Binary

Heaps
49

48

49

