
4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
1

L21: (Balanced) Binary 
Search Trees

Alex Steiger

CompSci 201: Spring 2024

4/1/2024



Logistics, Coming up

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
2

• This Wednesday, April 3
• APT 8 due

• Next Monday, April 8
• Project P5: Huffman due

• Next Wednesday, April 10
• APT Quiz 2 due

• Covers linked list, sorting, trees

• No regular APTs this week, just the quiz



Reminder: What is an APT Quiz?

• Set of 3 APT problems, 2 hours to complete.
• Will be available starting this Saturday afternoon (look for 

a Canvas/email announcement)

• Must complete by 11:59 pm Wednesday 4/12 (so start 
before 10)

• Start the quiz from link in instructions doc (like Quiz 
1), begins your timer
• Will look/work just like the regular APT page, just with 

only 3 problems.

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
3



Reminder: What is allowed?

Yes, allowed

• Zybook

• Course notes

• API documentation

• VS Code

• Jshell

• Searching internet for 
API usage, common 
patterns

No, not allowed

• Collaboration or sharing 
any code, including with 
ChatGPT/Copilot/other
generative AI.

• Communication about 
the problems at all 
during the window.

• Searching internet for 
solutions.

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
4



Reminder: Don’t do these things

1. Do not collaborate. Note that we log all code 
submissions and will investigate for academic 
integrity.

2. Do not hard code the test cases (if(input == X) 
return Y, etc.).
We show you the test cases to help you debug. But we 
search for submissions that do this and you will get a 0 on 
the APT quiz if you hard code the test cases instead of 
solving the problem.

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
5



Reminder: How is it graded?

Raw score R out 
of 30.

Adjusted score 
A out of 30.

100 point grade 
scale

27 <= R <= 30 A = R 90 – 100

24 <= R <= 26 A = 26 ~87

21 <= R <= 23 A = 25 ~83

18 <= R <= 20 A = 24 80

15 <= R <= 17 A = 23 ~77

12 <= R <= 14 A = 22 ~73

9 <= R <= 11 A = 21 70

6 <= R <= 8 A = 20 ~67

3 <= R <= 5 A = 19 ~63

1 <= R <= 2 A = 18 60

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
6

Not curved, adjusted. 3 problems, 10 points each. 

Can still get in the B 
range even if you can’t 
solve one; don’t panic!

Only going to get a 0 if 
you collaborate or 

hard code test cases. 
Don’t do it!



Binary Heap Wrapup
Reminder: You can see a simple DIY implementation of 
an array-based (actually ArrayList) binary heap at 
https://coursework.cs.duke.edu/cs-201-spring-24/live-
coding/-/tree/main/DIYBinaryHeap 

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
7

https://coursework.cs.duke.edu/cs-201-spring-24/live-coding/-/tree/main/DIYBinaryHeap
https://coursework.cs.duke.edu/cs-201-spring-24/live-coding/-/tree/main/DIYBinaryHeap


java.util.PriorityQueue API

Method Behavior Runtime 
Complexity

add(element) Add an element to the priority 
queue

O(log(N)) 
comparisons

remove() Remove and return the minimal 
element

O(log(N)) 
comparisons

peek() Return (do *not* remove) the 
minimal element

O(1)

size() Return number of elements O(1)

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
8



Binary Heap at a high level

A binary heap is a binary tree 
satisfying the following structural 
invariants:

• heap property: every node is less 
than or equal to its successors, and

• shape property: the tree is complete 
(full except possibly last level, in 
which case it should be filled from 
left to right)

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
9

By Vikingstad at English Wikipedia - Transferred from 
en.wikipedia to Commons by LeaW., Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=3504
273



L20-WOTO2-BinaryHeap-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetID * 

1

solutions

1, 2, 17, 25, 100, 19, 3, 36, 7

1, 2, 3, 7, 17, 19, 25, 36, 100

1, 2, 3, 17, 19, 36, 7, 25, 100

Which of the following correctly shows the 
order in which elements of this heap would be 
stored in an array representation? * 

2



5

6

10

12

21

22

When 1-indexing, if a value in the heap is stored at index 11 in the array representation, 
at which index will its parent be stored? * 

3

0

1

9

10

20

Suppose we add the value 20 to this heap. At 
what index in the array representation will it be 
added before any swapping? Assume we are 1-
indexing the array (that is, the first element is 
stored at index 1). * 

4



0

1

2

3

Suppose we add the value 20 to this heap. How 
many swaps will be needed to reestablish the 
heap property? * 

5

0

1

2

3

Suppose we remove the minimum value from 
this heap. AFTER replacing the root with the last 
node in the heap, how many swaps will be 
necessary to reestablish the heap property?  * 

6



True

False

True or false: For a heap with N > 3 elements, it is possible that an add or remove 
operation might require N swaps to reestablish the heap property. * 

7

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for
the privacy or security practices of its customers, including those of this form owner. Never give out your password.
Microsoft Forms | AI-Powered surveys, quizzes and polls Create my own form
Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423


decreaseKey Operation?

• decreaseKey(val, newVal) 
changes val in heap to 
(smaller) newVal

• Suppose we decrease the 
13 to 5

• Violates heap property

• Fix like in the add 
operation:
• While violating heap 

property, swap with parent

13

6

10 7

17 9 21

19 25

5

6

10 7

17 9 21

19 25

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
11

10

6

5 7

17 9 21

19 25

10

5

6 7

17 9 21

19 25



decreaseKey NOT in java.util

• decreaseKey is important for some algorithms, but 
not supported in many standard libraries (including 
the java.util.PriorityQueue)
• Used in later lectures!

• Why not supported?
• Note that binary heap does not support efficient search

• In order to do decreaseKey in O(log(n)) time, need to 
store references/indices of all the “nodes.”

• Adds overhead, not done in java.util 

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
12



Alternative Implementation:
Balanced Binary Search Tree

A binary tree is a binary search 
tree if for every node:

• Left subtree values are all less than the 
node’s value

AND

• Right subtree values are all greater than 
the node’s value

According to some ordering 
(natural ordering if Comparable 
or defined by Comparator)

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
13

“llama”

“tiger”

“monkey”“jaguar”“elephant”

“giraffe”

“pig”“hippo” “leopard”

all 

values 
< 7

all 

values 
> 7

7

Enables efficient search, similar to binary search!



Alternative Implementation:
Balanced Binary Search Tree

• If your keys happen to be unique…

• Can support O(log(n)) add & remove (including 
smallest) using a balanced binary search tree!

• Smallest is leftmost child

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
14



Removing the Minimum

• Smallest is leftmost child

• Iterate left until no left child
• This is the node to remove and value to return

• How to repair BST after removal?

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
15



Removing the Minimum

• Smallest is leftmost child

• Iterate left until no left child
• This is the node to remove and value to return

• How to repair BST after removal?
• If leftmost is a leaf, set parent’s left to null

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
16



Removing the Minimum

• How to repair BST after removal?
• If leftmost is a leaf, set parent’s left to null

• If leftmost has right child?

• Leftmost’s right child becomes parent’s left child

• BST property restored!

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
17



Removing the Minimum

• How to repair BST after removal?
• If leftmost is a leaf, set parent’s left to null

• If leftmost has right child?

• Leftmost’s right child becomes parent’s left child

• BST property restored!

• If leftmost has left child? Can’t happen (not the leftmost)

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
18



• How to repair BST after removal?
• Removal for node with 0-1 children generalizes from 

leftmost case

• Node with 2 children?

• Replace it with minimum in right subtree (leftmost!), 
then remove it using previous remove-min procedure

• Restores BST property

Aside: Removing any node?

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
19

Updated 4/4/24



Disadvantages to using a Binary 
Search Tree for your priority queue?

1. All elements must be unique
(There exist variations of BSTs that handle duplicates, but 
more complicated / depends on usage)

2. Not array-based, uses more memory and has 
higher constant factors on runtime

3. Much harder to implement with guarantees that 
the tree will be balanced.

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
21

???



Live Coding

• BST with RemoveMin

4/1/24
CompSci 201, Spring 2024, L21: Balanced 

Binary Search Trees
22


