L271: (Balanced) Binary
Search Trees

Alex Steiger
CompSci 201: Spring 2024
4/1/2024

Logistics, Coming up

« This Wednesday, April 3
« APT 8 due

« Next Monday, April 8
« Project P5: Huffman due

» Next Wednesday, April 10
* APT Quiz 2 due
« Covers linked list, sorting, trees
» No regular APTs this week, just the quiz

Reminder: What is an APT Quiz?

* Set of 3 APT problems, 2 hours to complete.
= Will be available starting this Saturday afternoon (look for
a Canvas/email announcement)

* Must complete by 11:59 pm Wednesday 4/12 (so start
before 10)

« Start the quiz from link in instructions doc (like Quiz
1), begins your timer
 Will look/work just like the regular APT page, just with
only 3 problems.

4/4/2024

Reminder: What is allowed?

Yes, allowed

* Zybook

« Course notes

» APl documentation
* VS Code

* Jshell

« Searching internet for
APl usage, common
patterns

No, not allowed

« Collaboration or sharing
any code, including with
ChatGPT/Copilot/other
generative Al.

« Communication about
the problems at all
during the window.

« Searching internet for
solutions.

Reminder: Don't do these things

1. Do not collaborate. Note that we log all code
submissions and will investigate for academic

integrity.

2. Do not hard code the test cases (if(input == X)

return, etc.).

We show you the test cases to help you debug. But we
search for submissions that do this and you willgeta 0 on
the APT quiz if you hard code the test cases instead of

solving the problem.

Reminder: How is it graded?

Not curved, adjusted. 3 problems, 10 points each.

Raw scoreR out | Adjustedscore | 100 point grade
of 30. Aoutof30. scale

27 <=R<=30 A=R
24<=R<=26 A=26
21<=R<=23 A=25
18<=R<=20 A=24
15<=R<=17 A=23
12<=R<=14 A=22
9<=R<=11 A=21

6<=R<=8 A=20
3<=R<=5 A=19
1<=R<=2 A=18

90 - 100

Can still get in the B
range even if you can't
solve one; don't panic!

Only going to get a 0 if
you collaborate or
hard code test cases.
Don't do it!

4/4/2024

4/4/2024

Binary Heap Wrapup

Reminder: You can see a simple DIY implementation of
an array-based (actually ArrayList) binary heap at
https://coursework.cs.duke.edu/cs-201-spring-24/live-
coding/-/tree/main/DIYBinaryHeap

java.util.PriorityQueue API

Method Behavior Runtime
Complexity

add(element) Add an element to the priority O(log(N))
queue comparisons
remove() Remove and return the minimal O(log(N))
element comparisons
peek() Return (do *not* remove) the o(1)
minimal element
size() Return number of elements o(1)

Binary Heap at a high level

Abinary heap is a binary tree
satisfying the following structural L)\\
invariants: ~ R
« heap property: every node is less) B) ,u\r)
than or equal to its successors, and @ ® @ O
- shapeproperty: the tree is complete @)’ @
(full except possibly last level, in .
which case it should be filled from
left to right)

https://coursework.cs.duke.edu/cs-201-spring-24/live-coding/-/tree/main/DIYBinaryHeap
https://coursework.cs.duke.edu/cs-201-spring-24/live-coding/-/tree/main/DIYBinaryHeap

WOTO
Go to duke.is/9/znk

ok
[=] ki

Not graded for
correctness, just
participation.

[=]

Try to answer without
looking back at slides
and notes.

But do talk to your
neighbors!

10
decreaseKey Operation?
®.
« decreaseKey(val, newVal) (9
changes val in heap to @7 ® 0@
(smaller) newVal ©® ®
@ ® ® @
« Suppose we decrease the a @
13105 @®
. Vi D
\/.IO|.ateS- heap property @ o & @
« Fix like in the add @ &
operation: ®.
While violating heap O Q!
property, swap with parent M @ ® @
@ @
11

decreaseKey NOT in java.util

« decreaseKey is important for some algorithms, but
not supported in many standard libraries (including
the java.util. PriorityQueue)

« Used in later lectures!

* Why not supported?
« Note that binary heap does not support efficient search

« In order to do decreaseKey in O(log(n)) time, need to
store references/indices of all the ‘nodes.”

« Adds overhead, not done in java.util

12

4/4/2024

https://duke.is/9/znk3

L20-WOTO2-BinaryHeap-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

1

NetlD * [}

solutions

2

Which of the following correctly shows the
order in which elements of this heap would be
stored in an array representation? * [T}

() 1,2,17,25,100, 19, 3, 36, 7
() 1,2,3,7,17,19, 25, 36, 100

@ 1,2,3,17,19,36,7, 25,100

3

When 1-indexing, if a value in the heap is stored at index 11 in the array representation,

at which index will its parent be stored? * [1}

4

Suppose we add the value 20 to this heap. At
what index in the array representation will it be
added before any swapping? Assume we are 1-
indexing the array (that is, the first element is
stored at index 1). * 1)

5 ()
Suppose we add the value 20 to this heap. How
many swaps will be needed to reestablish the ° o

heap property? * [1} e e o

6 (D
Suppose we remove the minimum value from

this heap. AFTER replacing the root with the last o °
node in the heap, how many swaps will be

necessary to reestablish the heap property? * o o e o
0

True or false: For a heap with N > 3 elements, it is possible that an add or remove
operation might require N swaps to reestablish the heap property. * [1}

Q True
@ False

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for
the privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

13

14

15

Alternative Implementation:
Balanced Binary Search Tree

. . . (
A binary tree is a binary search /Q)\
tree if for every node: ,, A
« Left subtree values are all less than the ra <3
node’s value
AND =

* Right subtree values are all greaterthan
the node’s value @

o)
According to some ordering Gy Gy G
(natural ordering if Comparable R

or defined by Comparator)

Enables efficient search, similar to binary search!

Alternative Implementation:
Balanced Binary Search Tree

« If your keys happen to be unique...

« Can support O(log(n)) add & remove (including
smallest) using a balanced binary search tree!

* Smallest is leftmost child

Removing the Minimum

« Smallest is leftmost child

« Iterate left until no left child
« This is the node to remove and value to return

» How to repair BST after removal?

4/4/2024

Removing the Minimum

» Smallest is leftmost child
« Iterate left until no left child
« This is the node to remove and value to return

« How to repair BST after removal?
« If leftmost is a leaf, set parent’s left to null

(Bﬁ) (Bﬁ)
T) — e
- S &X
(o) () ORO,

16
Removing the Minimum
« How to repair BST after removal?
« If leftmost is a leaf, set parent’s left to null
« If leftmost has right child?
« Leftmost's right child becomes parent’s left child
« BST property restored!
' '
{ B} :]
A . A A B
| oI YOO
‘,4>S\ 2,< N Z<
(6) (in = o .i\.
= (o) (1s) (1) \18)
17
Removing the Minimum
» How to repair BST after removal?
« If leftmost is a leaf, set parent’s left to null
« If leftmost has right child?
« Leftmost's right child becomes parent’s left child
« BST property restored!
« If leftmost has left child? Can't happen (not the leftmost)
O (o)
| RO YOO
k_,>3\ Z_< o Z_ <
(e) (- ‘\‘ g -\I
=y 18) ey Us)
18

4/4/2024

Aside: Removing any node?
Updated 4/4/24
« How to repair BST after removal?

« Removal for node with 0-1 children generalizes from
leftmost case

« Node with 2 children?

* Replace it with minimum in right subtree (leftmost!),
then remove it using previous remove-min procedure
« Restores BST property

/ N L\

) (12 (4 (12 (&) (12

Co) Fiay (e (e) Xﬂ 15) &) (n 15)
(1)

19

Disadvantages to using a Binary
Search Tree for your priority queue?

1. All elements must be unique

(There exist variations of BSTs that handle duplicates, but
more complicated / depends on usage)

2. Not array-based, uses more memory and has
higher constant factors on runtime

3. Much harder to implement with guarantees that
the tree will be balanced. 977

21

Live Coding

« BST with RemoveMin

22

4/4/2024

