
4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 1

L23: DFS & BFS
Alex Steiger

CompSci 201: Spring 2024

4/8/2024



Logistics, coming up

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 2

• Today, Monday, April 8
• Project P5: Huffman due

• Project P6: Route out by tomorrow

• This Wednesday, April 10
• APT Quiz 2 due

• Covers linked list and trees

• Practice quiz from discussion is similar

• No regular APTs due this week, just the quiz



Today’s agenda

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 3

• General depth-first search (DFS)
• Seen it on grid graphs, how about arbitrary graphs?

• Introduce breadth-first search (BFS)



Depth-First Search in 
General Graphs

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 4



Pathfinding / Graph Search

Is there a way to get from point A to 
point B?

• Maps/directions

• Video games

• Robot motion planning

• Etc.

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 5



Recall: Grid Graph, Maze Example

• Example: 10 x 10 grid

• Edge = no wall, no edge = 
wall.

• Look for a path from start 
(lower left) to middle.

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 6



Depth-First Search for Solving Maze

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 7

If nothing new (unvisited) 
vertex to explore:
• backtrack to the most 

recent vertex adjacent 
to an unvisited vertex, 
and then continue.

• if no such vertex, maze 
is unsolvable.

Always explore (recurse on) a new (unvisited) adjacent 
vertex if possible.



Representations for Arbitrary Graphs 
(not only Grid Graphs)

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 8

Adjacency List Adjacency Matrix

zyBook



Efficient Adjacency “List” Using 
Double Hashing

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 9

• HashMap<Vertex, HashSet<Vertex>> aList
• Vertex type can be Integer, char, String, custom object, 

…, needs to have good hashCode() and equals().

• aList.put(‘A’, new HashSet())

• aList.get(‘A’).add(‘B’)

• aList.get(‘A’).add(‘C’)

• … 

O(1) time to check if nodes are connected or get the 
neighbors of a node (assuming good hashCode)



Graph Search Data Structures

1) Have an adjacency list for the graph

2) Keep track of visited nodes in a set

3) Keep track of the previous node: During search, 
how did I get to this node?

• Example has Character nodes, could be any label 
for the nodes.

• Storing as instance variables, accessible in 
methods.

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 10



Recursive DFS on a General Graph: 
Visiting all nodes

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 11

Base case: If 
already visited, 

backtrack

Else, visit this 
node

And explore its 
neighbors, adjacent 

nodes



Initialize search at A

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 12

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

Visited (set)

{A}



Recurse on B

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 13

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

Visited (set)

{A, B}



Recurse on E

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 14

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

Visited (set)

{A, B, E}



Recurse on D

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 15

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

Visited (set)

{A, B, E, D}



Backtrack to E, recurse on F

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 16

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

Visited (set)

{A, B, E, D, F}



Recurse on C

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 17

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

Visited (set)

{A, B, E, D, F, C}



Did we really need recursion?
preOrder Tree Traversal with Stack

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 18

Recursion uses the call stack to keep track of nodes
Could also explicitly use a stack, can do the same for DFS



Stack Abstract Data Structure:
LIFO List

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 19

LIFO = Last In 
First Out 

Push: Add 
element to 

stack

Pop: Get last 
element in

wonderful
is
compsci



Initializing Iterative DFS

• Stack stores nodes we have visited/discovered, but 
not explored from yet.

• Explore from one current node at a time.

• Stack is LIFO (last-in first-out), so we always 
explore from the last node we discovered, depth-
first!

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 20



Iterative DFS Loop

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 21

While there are nodes we 
have not explored from… Explore from the most 

recently discovered node…

Look at all neighbors 
of current node…

If we haven’t seen 
them before…

Then:
1. note how we got here
2. Note we have seen
3. Mark to explore later



Initialize search at A

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 22

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

A

previous (map) Visited (set)

{A}



Pop A off the stack

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 23

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack) previous (map) Visited (set)

{A}



Find B from A

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 24

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

B

previous (map)

B <- A

Visited (set)

{A, B}



Find D from A

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 25

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

D
B

previous (map)

B <- A
D <- A

Visited (set)

{A, B, D}



Pop D off the stack

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 26

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

B

previous (map)

B <- A
D <- A

Visited (set)

{A, B, D}



Find E from D

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 27

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

E
B

previous (map)

B <- A
D <- A
E <- D

Visited (set)

{A, B, D, E}



Pop E off the stack

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 28

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

B

previous (map)

B <- A
D <- A
E <- D

Visited (set)

{A, B, D, E}



Find F from E

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 29

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

F
B

previous (map)

B <- A
D <- A
E <- D
F <- E

Visited (set)

{A, B, D, E, F}



Pop F off the stack

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 30

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

B

previous (map)

B <- A
D <- A
E <- D
F <- E

Visited (set)

{A, B, D, E, F}



Find C from F

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 31

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

C
B

previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

Visited (set)

{A, B, D, E, F, C}



Pop C off the stack

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 32

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

B

previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

Visited (set)

{A, B, D, E, F, C}



Pop B off the stack

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 33

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack) previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

Visited (set)

{A, B, D, E, F, C}



DFS Search Tree

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 34

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack) previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

Visited (set)

{A, B, D, E, F, C}Can find paths from A 
to X by following 

previous backwards 
from X

Path from A to C:
C <- F <- E <- D <- A



DFS Complexity?

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 36

While loop over all 
nodes (N), potentially?

Loop over edges (M)

Seems like O(NM), 
but…



DFS Complexity?

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 37

Loop over edges 
adjacent to current node

• Pop each of N nodes at most once.
• Loop over neighbors of each node exactly 

once, considers each edge twice.
• N+2M is O(N+M).



L22-WOTO2-GeneralDFS-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetID * 

1

solutions

After running DFS, which of these data structures would you use to get the actual path from a 
start vertex to a destination? * 

2



aList

visited

previous

none of the above

Check all nodes reachable by one edge from any visited nodes

Check all nodes reachable by one edge from the node we are exploring

The best explanation of the loop on line 22 is... * 

3



Check all of the unvisited nodes

Some nodes are connected to many other nodes in the graph

Some nodes are not reachable from others

Never, the while loop should always have N iterations

Same code. The while loop on line 20 might have fewer than N iterations (when there are N 
nodes in the graph) when... * 

4

What best describes the runtime complexity of DFS using a stack and hash-based data 
structures? Let N be the number of vertices and M be the number of edges. * 

5



O(N)

O(N+M)

O(NM)

True

False

True or false: This dfs algorithm will always find the shortest path from the start node to other 
nodes * 

6



This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.
Microsoft Forms | AI-Powered surveys, quizzes and polls Create my own form
Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423


Iterative Breadth-First 
Search (BFS)

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 38



Queue: A FIFO List

• Both add and remove are O(1)
• Add at end of LinkedList

• Remove from front of LinkedList

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 39

compsci
is
wonderful

LinkedList implements 
the Queue interface.



Level Order Tree Traversal
using a Queue

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 40

Idea: Use a queue to keep track of nodes.
First-in first-out, nodes visited in level order



Depth-First Search for Solving Maze

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 41

Always explore (recurse 
on) a new (unvisited) 
adjacent vertex if 
possible.

If impossible, backtrack 
to the most recent 
vertex adjacent to an 
unvisited vertex and 
continue.



Breadth-First Search for Solving Maze

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 42

Explore all your 
neighbors (adjacent 
vertices) before you visit 
any of your neighbors’ 
neighbors.

Looking for the shortest 
path/solution.

DFS never 
looked 
here!



Queue = BFS, Stack = DFS

BFS: FIFO Exploration

search all locations one-
away from start, then 
two-away, …

DFS: LIFO Exploration

Search path as far as 
possible, backtrack if 
need to another branch…

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 43



Initializing Iterative BFS

• Queue stores nodes we have visited/discovered, but 
not explored from yet.

• Explore from one current node at a time.

• Queue is FIFO (first-in first-out), so we always 
explore from the first/closest (unvisited) node we 
discovered, breadth-first!

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 44



Iterative BFS Loop

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 45

While there are nodes we 
have not explored from… Explore from the closest 

discovered node…

Look at all neighbors 
of current node…

If we haven’t seen 
them before…

Then:
1. Note how we got here
2. Note we have seen
3. Mark to explore later



Initialize search at A

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 46

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue)

A

previous (map) Visited (set)

{A}



Remove A from the queue

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 47

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue) previous (map) Visited (set)

{A}



Find B from A

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 48

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue)

B

previous (map)

B <- A 

Visited (set)

{A, B}



Find D from A

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 49

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue)

B
D

previous (map)

B <- A 
D <- A 

Visited (set)

{A, B, D}

Note the difference, 
add to end of queue!



Remove B from queue

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 50

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue)

D

previous (map)

B <- A 
D <- A 

Visited (set)

{A, B, D}

B was first in, 
B is first out



Find E from B

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 51

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue)

D
E

previous (map)

B <- A 
D <- A 
E <- B 

Visited (set)

{A, B, D, E}



Find F from B

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 52

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue)

D
E
F

previous (map)

B <- A 
D <- A 
E <- B 
F <- B

Visited (set)

{A, B, D, E, F}



Remove D from queue

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 53

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue)

E
F

previous (map)

B <- A 
D <- A 
E <- B 
F <- B

Visited (set)

{A, B, D, E, F}



Remove E from queue

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 54

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue)

F

previous (map)

B <- A 
D <- A 
E <- B 
F <- B

Visited (set)

{A, B, D, E, F}



Remove F from queue

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 55

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue) previous (map)

B <- A 
D <- A 
E <- B 
F <- B

Visited (set)

{A, B, D, E, F}



Find C from F

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 56

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue)

C

previous (map)

B <- A 
D <- A 
E <- B 
F <- B
C <- F

Visited (set)

{A, B, D, E, F, C}



Remove C from queue

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 57

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue) previous (map)

B <- A 
D <- A 
E <- B 
F <- B
C <- F

Visited (set)

{A, B, D, E, F, C}



BFS Search Tree

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 58

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (queue) previous (map)

B <- A 
D <- A 
E <- B 
F <- B
C <- F

Visited (set)

{A, B, D, E, F, C}



L23-WOTO2-BFS-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetID * 

1

solutions

True or false: These global data structures will not work for / need to be changed for BFS vs 
DFS. * 

2



True

False

Line 33

Line 38

Line 40

Which line of code best explains what is different 
about BFS vs. DFS algorithmically? * 

3



Line 41

Because Queues do not store duplicates

Because we only consider each node as a "neighbor" once

Because of the visited Set

What best explains why the while loop on line 38 
only considers each node in the graph once / is 
O(N)? * 

4



O(N)

O(M)

O(NM)

If there are N nodes and M edges in the graph and 
the graph is connected, how many total times might 
line 41 be executed? * 

5

True

False

True or false: BFS can find shortest paths from the start node to all other reachable nodes. * 

6



True

False

True or false: BFS explores all possible paths from the start node to all other reachable nodes. * 

7

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.
Microsoft Forms | AI-Powered surveys, quizzes and polls Create my own form
Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423


Comparing DFS and BFS Search 
Trees

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 59

A

D

B

E

C

F

start: A

previous (map)

B <- A 
D <- A 
E <- B 
F <- B
C <- F

A

D

B

E

C

F

start: A

previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

Length 4 path 
from A to C

Length 3 path 
from A to C, 

shorter!



Pathfinding Properties

• DFS and BFS both find valid paths to all nodes 
reachable from the start.
• Can return early if you only want to find a path to a 

specific target node

• BFS finds the shortest path to every reachable 
node, DFS does not guarantee this.

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 60


