[23: DFS & BFS

Alex Steiger
CompSci 207: Spring 2024
4/8/2024

L ogistics, coming up

« Today, Monday, April 8
 Project P5: Huffman due
- Project P6: Route out by tomorrow

* This Wednesday, April 10
« APT Quiz 2 due
« Covers linked list and trees
» Practice quiz from discussion is similar
* No regular APTs due this week, just the quiz

Today's agenda

 General depth-first search (DFS)

« Seen it on grid graphs, how about arbitrary graphs?

* Introduce breadth-first search (BFS)

Depth-First Search in
General Graphs

Pathfinding / Graph Search

R.0.B-0.T. Comics

Is there a way to get from point A to
point B?

« Maps/directions
 Video games

« Robot motion planning
* Etc.

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S 60T FLAIR."

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS S)

Recall: Grid Graph, Maze Example

17 public class MazeDemo {

18 private int mySize; // dimension of maze

19 private boolean[][] north; // 1s there a wall to north of cell i, j
20 private boolean[][] east; o o

21 private boolean[][] south; File

22 private boolean[][] west;

« Example: 10 x 10 grid

« Edge = no wall, no edge =
wall.

 Look for a path from start
(lower left) to middle.

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 6

Depth-First Search for Solving Maze

Always explore (recurse on) a new (unvisited) adjacent
vertex it possible.

r
C] Maze Demo with DFS
File

If nothing new (unvisited)

vertex to explore: |98 60606009
O 0000 0O
backtrack to the.most oo oleoelee
recent vertex adjacent eoooeeoele
to an unvisited vertex, eooo0o0o
and then continue. | @eoclee
. I @
!f no such vertex, maze ~ sele oo
'S unsolvable. oo coe (00 |o
® oo o000

|

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

Representations for Arbitrary Graphs
(not only Grid Graphs)

®

Adjacency List @ Adjacency Matrix
Vertices Adjacent vertices (edges) A B C D
A A
B C D B 1
C B C |
D B D

4/8/24 zyBook CompSci 201, Spring 2024, L23: DFS & BFS 8

Efficient Adjacency “List” Using
Double Hashing

 HashMap<Vertex, HashSet<Vertex>> alist

* Vertex type can be Integer, char, String, custom object,
.., Needs to have good hashCode() and equals().

Vertices Adjacent vertices (edges)

R e alList.put(“A’, new HashSet())
@ 5) . - alist.get(“A’).add(‘B’)
e alist.get(“A’).add(‘C’)
Cc B
e (© .

0(1) time to check if nodes are connected or get the
neighbors of a node (assuming good hashCode)

Graph Search Data Structures

1) Have an adjacency list for the graph
2) Keep track of visited nodes in a set

3) Keep track of the previous node: During search,
how did | get to this node?

9 public class DFS {

10 public static Map<Character, Set<Character>> alist;
11 public static Set<Character> visited;
12 public static Map<Character, Character> previous;

« Example has Character nodes, could be any label
for the nodes.

 Storing as instance variables, accessible in
methods.

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 10

Recursive DFS on a General Graph:
Visiting all nodes

Base case: If

already visited,

14 public static void dfs(char start) el
15 i1f (lvisited.contains(start)) {

16 visited.add(start); Else, visit this

17 System.out.println(start); LIS

18 for (char neighbor : alList.get(start)) {

19 dfs(neighbor);

20 1

21 } And explore its
22 } neighbors, adjacent

4/8/24

CompSci 201, Spring 2024, L23: DFS & BFS

nodes

11

Initialize search at A

start: A Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

14 public static void dfs(char start) {

. . 15 if (!visited.contains(start)) {

Visited (Set) 16 visited.add(start);
17 System.out.println(start);

{A} 18 for (char neighbor : alList.get(start)) {
19 dfs(neighbor);
20 }
21 }
22 }

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 12

Recurse on B

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

14 public static void dfs(char start) {

. . 15 if (!visited.contains(start)) {

Visited (Set) 16 visited.add(start);
17 System.out.println(start);

{A, B} 18 for (char neighbor : alList.get(start)) {
19 dfs(neighbor);
20 }
21 }
22 }

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 13

Recurse on

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

14 public static void dfs(char start) {

. . 15 if (!visited.contains(start)) {

Visited (Set) 16 visited.add(start);
17 System.out.println(start);

{A, B, E} 18 for (char neighbor : alList.get(start)) {
19 dfs(neighbor);
20 }
21 }
22 }

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 14

Recurse on D

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

14 public static void dfs(char start) {

. . 15 if (!visited.contains(start)) {

Visited (Set) 16 visited.add(start);
17 System.out.println(start);

{A, B, E, D} 18 for (char neighbor : alList.get(start)) {
19 dfs(neighbor);
20 }
21 }
22 }

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 15

Backtrack to E, recurse on F

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

14 public static void dfs(char start) {

. . 15 if (!visited.contains(start)) {

Visited (Set) 16 visited.add(start);
17 System.out.println(start);

{A,B,E, D, F} 18 for (char neighbor : alList.get(start)) {
19 dfs(neighbor);
20 }
21 }
22 }

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 16

Recurse on C

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

14 public static void dfs(char start) {

. . 15 if (!visited.contains(start)) {

Visited (Set) 16 visited.add(start);
17 System.out.println(start);

{A,B,E, D,FC} 18 for (char neighbor : alList.get(start)) {
19 dfs(neighbor);
20 }
21 }
22 }

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 17

Did we really need recursion?
preOrder Tree Traversal with Stack

public static void preOrder(TreeNode tree) A{
Stack<TreeNode> myStack = new Stack<>();

myStack.add(tree); o 4
while (!myStack.isEmpty()) {

TreeNode current = myStack.pop(); ° @ 6

if (current != null) { 12
System.out.println(current.info) o @ G
myStack.add(current.right); 10

15

myStack.add(current.left);

5

Recursion uses the call stack to keep track of hodes
Could also explicitly use a stack, can do the same for DFS

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 18

Stack Abstract Data Structure:
LIFO List

5 public static void sdemo() {

6 String[] strs = {"compsci", "is", "wonderful"}; LIFO = Last In
7 Stack<String> st = new Stack<>(); :

8 for(String s : strs) { First Out

9 st.push(s);

10 }

11 while (! st.isEmpty()) { Push: Add
12 System.out.println(st.pop());

-) element to
14 0} stack
wonderful

< Pop: Get last
compsci element in

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 19

Initializing lterative DFS

» Stack stores nodes we have visited/discovered, but
not explored from yet.

« Explore from one current node at a time.

14 public static void dfs(char start) {

15 Stack<Character> toExplore = new Stack<>();
16 char current = start;

17 toExplore.add(current);

18 visited.add(current);

« Stack is LIFO (last-in first-out), so we always
explore from the last node we discovered, depth-

first!

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 20

While there are nodes we
have not explored from...

21
22
23
24
25
26
27
28
29

4/8/24

while (!toExplore.isEmpty()) {

'terative DFS Loop

current = toExplore.pop();

Explore from the most
recently discovered node...

Look at all neighbors
of current node...

for (char neighbor : alList.get(current)) {
1f (!visited.contains(neighbor)) { If we haven't seen
previous.put(neighbor, current); them before...

visited.add(neighbor);
toExplore.push(neighbor);

CompSci 201, Spring 2024, L23: DFS & BFS

Then:
1. note how we got here

2. Note we have seen
3. Mark to explore later

21

Initialize search at A

start: A Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

A {A}

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

22

Pop A off the stack

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

{A}

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

23

Find B from A

start: A Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

B B<-A {A, B}

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

24

Find D from A

start: A Adjacency List:

A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

D B< A (A, B, D}

B D<-A

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

25

Pop D oft the stack

start: A Adjacency List:

A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

B B< A (A, B, D}

D<-A
4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

26

start: A

toExplore (stack)

E
B

4/8/24

Find E from D

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

previous (Map) Visited (set)
B<- A {A, B, D, E}

D<-A
E<-D

CompSci 201, Spring 2024, L23: DFS & BFS

27

Pop E off the stack

start: A Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)
B B<-A {A, B, D, E}

D<-A
E<-D

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

start: A

toExplore (stack)

F
B

4/8/24

Find F from

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

previous (Map) Visited (set)

B<-A {A, B, D, E, F}

D<-A

E<-D

F<-E

CompSci 201, Spring 2024, L23: DFS & BFS

29

Pop F off the stack

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (stack) previous (Map) Visited (set)
B B <- A (A, B, D, E, F}
D<-A
E<-D
F<-E

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

start: A

toExplore (stack)

o

4/8/24

Find C from F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

previous (Map) Visited (set)

B<-A {A,B,D,E,F C}

D<-A

E<-D

F<-E

C<-F

CompSci 201, Spring 2024, L23: DFS & BFS

31

Pop C off the stack

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (stack) previous (Map) Visited (set)
B B<A {A,B,D,E,F, C)
D<-A
E<-D
F<-E
C<-F

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

Pop B off the stack

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (stack) previous (Map) Visited (set)

B< A {A,B,D,E,F, C)

D<-A

E<-D

F<-E

C<-F

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

DFS Search Tree

start: A Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

Can find paths from A B<-A {A,B,D,EFC}
to X by following D<-A

previous backwards E<-D Path from A to C:
from X I:;<|E: C<-F<-E<-D=<-A
<_

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 34

DES Complexity?

While loop over all

nodes (N), potentially?

20 while (!toExplore.isEmpty()) {
Loop over edges (M)

21 current = tokExplore.pop();

22 for (char neighbor : alList.get(current)) {

23 1f (lvisited.contains(neighbor)) {

24 previous.put(neighbor, current);

25 visited.add(neighbor);

26 toExplore.push(neighbor);

27 }

28 } Seems like O(NM),
29 } but...

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 36

DES Complexity?

20 while (!toExplore.isEmpty()) { Loop over edges

21 current = toExplore.pop(); adjacent to current node
22 for (char neighbor : alList.get(current)) {

23 1f (lvisited.contains(neighbor)) {

24 previous.put(neighbor, current);

25 visited.add(neighbor);

26 toExplore.push(neighbor);

27 }

28 by Pop each of N nodes at most once.

29 by Loop over neighbors of each node exactly

once, considers each edge twice.
N+2M is O(N+M).

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 37

L22-WOTO2-GeneralDFS-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.
* Required
NetlD * [T}

solutions

2

After running DFS, which of these data structures would you use to get the actual path from a
start vertex to a destination? * [T}

9 public class DFS {

10 public static Map<Character, Set<Character>> alist;
11 public static Set<Character> visited;
12 public static Map<Character, Character> previous;
O alList
O visited
@ previous

O none of the above

3

The best explanation of the loop on line 22 is... * [T}

20 while (!toExplore.isEmpty()) {

21 current = toExplore.pop();
22 for (char neighbor : alList.get(current)) {
23 if (lvisited.contains(neighbor)) {

O Check all nodes reachable by one edge from any visited nodes

@ Check all nodes reachable by one edge from the node we are exploring

O Check all of the unvisited nodes

4

Same code. The while loop on line 20 might have fewer than N iterations (when there are N
nodes in the graph) when... * [T}

20 while (!toExplore.isEmpty()) {

21 current = toExplore.pop();
22 for (char neighbor : alist.get(current)) {
23 if (!visited.contains(neighbor)) {

O Some nodes are connected to many other nodes in the graph
@ Some nodes are not reachable from others

O Never, the while loop should always have N iterations

5

What best describes the runtime complexity of DFS using a stack and hash-based data
structures? Let N be the number of vertices and M be the number of edges. * [1)

20 while (!toExplore.isEmpty()) {

21 current = tokxplore.pop();
22 for (char neighbor : alList.get(current)) {
23 if (lvisited.contains(neighbor)) {
24 previous.put(neighbor, current);
25 visited.add(neighbor);
26 toExplore.push(neighbor);
27 ¥
O o
@ oN+Mm)
() onmy

6

True or false: This dfs algorithm will always find the shortest path from the start node to other
nodes * [T}

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

lterative Breadth-First
Search (BFS)

Queue: A FIFO List

« Both add and remove are O(1)
« Add at end of LinkedList
« Remove from front of LinkedList

LinkedList implements

the Queue interface.

public static void gdemo() {
String[] strs = {"compsci", "is=*"wonderful"}; COMPSCi
Queue<String> q = new LinkedList<>(); is

for(String s : strs) {
q.add(s); wonderful

+
while (! q.isEmpty()) {
System.out.println(q.remove());

}

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 39

| evel Order Tree Traversal
using a Queue

public static void levelOrder(TreeNode tree) f{
Queue<TreeNode> queue = new LinkedList<>();
queue.add(tree);
while (!queve.isEmpty()) {

TreeNode current = queue.remove(); ° 4

if (current != null) { 12
System.out.println(current.info); ° @ 6
queue.add(current.left); o ° @
queue.add(current.right); 10

} 15

ldea: Use a queue to keep track of nodes.
First-in first-out, nodes visited in level order

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 40

Depth-First Search for Solving Maze

File

Always explore (recurse

on) a new (unvisited) -
adjacent vertex if
possible. o0

- eooe
If impossible, backtrack ® o
to the most recent — oo o : o
vertex adjacent to an oo [ee[ojelee
unvisited vertex and OO XXX

continue.

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

41

Breadth-First Search for Solving Maze

Explore all your
neighbors (adjacent
vertices) before you visit
any of your neighbors’
neighbors.

Looking for the shortest
path/solution.

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

File

DFS never
looked
here! 42

Queue = BFS, Stack = DFS

BFS: FIFO Exploration DFS: LIFO Exploration
search all locations one- Search path as far as
away from start, then possible, backtrack if

two-away, ... need to another branch...

RN
- S
* S
0 LS
0 .
L .
n a
. n
- |
L]
° .
. o
¢ .
Emnm

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 43

Initializing Iterative BFS

* Queue stores nodes we have visited/discovered, but
not explored from yet.

« Explore from one current node at a time.

32 public static void bfs(char start) {

33 Queue<Character> toExplore = new LinkedList<>();
34 char current = start;

35 visited.add(current);

36 toExplore.add(current);

« Queue is FIFO (first-in first-out), so we always
explore from the first/closest (unvisited) node we
discovered, breadth-first!

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 44

'terative BFS Loop

While there are nodes we

have not explored from... Explore from the closest

discovered node...

while (!toExplore.isEmpty()) { Look at all neighbors
39 current = toExplore.remove(); of current node...
40 for (char neighbor : aList.get(current)) {
41 1f (lvisited.contains(neighbor)) {
42 previous.put(neighbor, current);
43 visited.add(nheighbor); If we haven't seen
44 toExplore.add(neighbor); them before...
4 3 Then:
46 ¥ 1. Note how we got here
47 } 2. Note we have seen

3. Mark to explore later

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS 45

Initialize search at A

start: A Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (Map) Visited (set)

A {A}

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

46

Remove A from the queue

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (Map) Visited (set)

{A}

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

47

Find B from A

start: A Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (Map) Visited (set)

B B <A {A, B}

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

48

Find D from A

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (Map) Visited (set)

B B<-A {A, B, D}
D D<-A

Note the difference,
add to end of queue!
4/8/24 ompsSci 201, Spring 2024, L23: DFS & BFS

Remove B from queue

B was first in,
start: A B is first out Adjacency List:

A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (Map) Visited (set)

D B<-A {A, B, D}

D<-A
4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

o0

start: A

toExplore (queue)

D
E

4/8/24

Find E from B

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

previous (Map) Visited (set)
B<-A (A, B, D, E}

D<-A
E<-B

CompSci 201, Spring 2024, L23: DFS & BFS

o1

start: A

toExplore (queue)

D
E
F

4/8/24

Find F from B

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

previous (Map) Visited (set)

B< A (A, B, D, E, F}

D<-A

E<-B

F<B

CompsSci 201, Spring 2024, L23: DFS & BFS

52

Remove D from queue

toExplore (queue)

E
F

4/8/24

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

previous (Map) Visited (set)

B< A (A, B, D, E, F}

D<-A

E<-B

F<B

CompSci 201, Spring 2024, L23: DFS & BFS

53

Remove E from queue

start: A

toExplore (queue)

F

4/8/24

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

previous (Map) Visited (set)

B< A (A, B, D, E, F}

D<-A

E<-B

F<B

CompSci 201, Spring 2024, L23: DFS & BFS

54

Remove F from queue

start: A

toExplore (queue)

4/8/24

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

previous (Map) Visited (set)

B<-A {A, B, D, E, F}

D<-A

E<-B

F<-B

CompSci 201, Spring 2024, L23: DFS & BFS

55

start: A

toExplore (queue)

C

4/8/24

Find C from F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

previous (map) Visited (set)

B<- A {A,B,D,E, F C}

D<-A

E<-B

F<-B

C<-F

CompSci 201, Spring 2024, L23: DFS & BFS

56

Remove C from queue

start: A

toExplore (queue)

4/8/24

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

previous (map) Visited (set)

B<- A {A,B,D,E, F C}

D<-A

E<-B

F<-B

C<-F

CompSci 201, Spring 2024, L23: DFS & BFS

Y

BFS Search Tree

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (map) Visited (set)

B<-A {A, B, D, E,F,C}

D<-A

E<-B

F<-B

C<-F

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

L23-WOTO2-BFS-5p24

Hi, Alexander. When you submit this form, the owner will see your name and email address.
* Required
NetlD * [T}

solutions

2

True or false: These global data structures will not work for / need to be changed for BFS vs
DFS.* [0}

9 public class DFS {

10 public static Map<Character, Set<Character>> alist;
11 public static Set<Character> visited;
12 public static Map<Character, Character> previous;

3

Which line of code best explains what is different
about BFS vs. DFS algorithmically? * [T}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

AR

public static void bfs(char start) {

1

Queue<Character> toExplore = new LinkedlList<>();
char current = start;

visited.add(current);

toExplore.add(current);

while (!toExplore.isEmpty()) {
current = toExplore.remove();
for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.add(neighbor);
}
}
¥

O Line 41

4

What best explains why the while loop on line 38
only considers each node in the graph once / is
O(N)? * [0

O Because Queues do not store duplicates
O Because we only consider each node as a "neighbor" once

@ Because of the visited Set

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
aR

public static void bfs(char start) {
Queue<Character> toExplore = new LinkedlList<>();
char current = start;
visited.add(current);
toExplore.add(current);

while (!toExplore.isEmpty()) {
current = toExplore.remove();
for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.add(neighbor);

If there are N nodes and M edges in the graph and
the graph is connected, how many total times might

line 41 be executed? *

6

03

32
33
34
35

37
38
39
40
41
42
43
44
45
46

47
AR

public static void bfs(char start) {
Queue<Character> toExplore = new LinkedlList<>();
char current = start;
visited.add(current);
toExplore.add(current);

while (!toExplore.isEmpty()) {
current = toExplore.remove();
for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.add(neighbor);

True or false: BFS can find shortest paths from the start node to all other reachable nodes. *

03

@ True
O False

7

True or false: BFS explores all possible paths from the start node to all other reachable nodes. *
0

O True
@ False

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

Comparing DFS and BFS Search

Trees

start: A start: A

previous (map)
Length 4 path Length 3 path
fromAtoC B<-A from Ato C,
D<-A shorter!
E<-D
F<-E
C<-F

4/8/24 CompSci 201, Spring 2024, L23: DFS & BFS

previous (Map)

B<-A
D<-A
E<-B
F<-B
C<-F

59

Pathfinding Properties

« DFS and BFS both find valid paths to all nodes
reachable from the start.

« Can return early if you only want to find a path to a
specific target node

- BFS finds the shortest path to every reachable
node, DFS does not guarantee this.

