L23: DFS & BFS

Alex Steiger
CompSci 201: Spring 2024
4/8/2024

Logistics, coming up

» Today, Monday, April 8
« Project P5: Huffman due
« Project P6: Route out by tomorrow

* This Wednesday, April 10
« APT Quiz 2 due
« Covers linked list and trees
« Practice quiz from discussion is similar
» No regular APTs due this week, just the quiz

Today's agenda

* General depth-first search (DFS)

« Seen it on grid graphs, how about arbitrary graphs?

* Introduce breadth-first search (BFS)
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Depth-First Search in
General Graphs

Pathfinding / Graph Search

R.0.8.0.T. Co

Is there a way to get from point A to
point B?

» Maps/directions

* Video games

» Robot motion planning
« Etc.

Recall: Grid Graph, Maze Example

public class MazeDemo {
private int mySize; // dimension of maze
private boolean[][] north; /# is there a wall to north of cell i, j
private boolean[][] east; . P
private boolean[][] south;
private boolean[][] west;

» Example: 10 x 10 grid
« Edge = no wall, no edge =
wall.

« Look for a path from start
(lower left) to middle.
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Depth-First Search for Solving Maze

Always explore (recurse on) a new (unvisited) adjacent
vertex if possible.

If nothing new (unvisited)

vertex to explore:

« backtrack to the most
recent vertex adjacent
to an unvisited vertex,
and then continue.

< if no such vertex, maze
is unsolvable.

7
Representations for Arbitrary Graphs
(not only Grid Graphs)
Adjacency List G o Adjacency Matrix
Vertices  Adjacent vertices (edges) A B c D
A A 1
B cbD B 11
c B c 1
D B D 1
zyBook
Efficient Adjacency “List” Using
Double Hashing
* HashMap<Vertex, HashSet<Vertex>> alist
* Vertex type can be Integer, char, String, custom object,
.., needs to have good hashCode() and equals().
Veﬂi}c‘es Adjacent vertices (edges) . aLiSt.put( 'A", new HashSet())
Q) 8) s - « alist.get(‘A’).add(‘B’)
« alist.get(‘A’).add(‘C’)
@G @ -

0(1) time to check if nodes are connected or get the
neighbors of a node (assuming good hashCode)
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10

11

12

Graph Search Data Structures

1) Have an adjacency list for the graph
2) Keep track of visited nodes in a set

3) Keep track of the previous node: During search,
how did | get to this node?

9 public class DFS

19 public static Map<Character, Set<Character»> alist;
11 public static Set<Characters visited;
12 public static Map<Character, Character> previous;

» Example has Character nodes, could be any label
for the nodes.

« Storing as instance variables, accessible in
methods.

Recursive DFS on a General Graph:

Visiting all nodes

Base case: If
. 5 already visited,
14 public static void dfs(char start) backtrack

15 if (lvisited.contains(start)) {

16 visited.add(start); Else, vis‘w’t this
17 start); node

System.out.println(

18 for (char neighbor : alist.get(start)) {

19 dfs(neighbor);

20 }

21 } And explore its
22 } neighbors, adjacent

nodes

Initialize search at A

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

14 public static void dfs(char start) {

- 15 if (lvisited.contains(start)) {
Visited (set) 16 visited.add(start);
17 System.out.println(start);
{A} 18 for (char neighbor : alist.get(start)) {
19 dfs(neighbor);
20 ¥
21 3}
22 }
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13

14

15

start: A

Visited (set)

{A, B}

start: A

Visited (set)

{A, B, E}

start: A

Visited (set)

{A, B, E, D}

Recurse on B

14

16
17
18
19
20
21
22

Adjacency List:

A=[B,
B=[A,
C=[F]
D=[A,

0]
E F]

E]

E=[B, D, F]
F=[B, C, E]

public static void dfs(char start) {
if (lvisited.contains(start)) {

visited.add(start

3}

System.out.printin(start);

for (char neighbo
dfs(neighbor)
¢

Recurseon E

14

16
17
18
19
20
21
22

r @ alist.get(start)) {

Adjacency List:
A=[B, D]

B=[A, E,
C=[F]

D=[A, E]
E=[B, D,
F=[B, C,

F]

F]
E]

public static void dfs(char start) {

if (lvisited.contains(start)) {
visited.add(start);
System.out.println(start);
for (char neighbor

b;

dfs(neighbor);

Recurseon D

14

16
17
18
19
20
21
22

: alist.get(start)) {

Adjacency List:

A=[8, D]

B=[A, E, F]

C=[F]
D=[A, £]

E=[B, D, F]

F=[8, C, E]

public static void dfs(char start) {
if (lvisited.contains(start)) {
visited.add(start);
System.out.println(start);

for (char neighbor

i

dfs(neighbor);

: alist.get(start)) {
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Backtrack to E, recurse on F

14

16
17
18
19
20
21
22

Adjacency List:
A=[B, D]
B=[A,E, F]

C=[F)

D=[A, E]
E=[B, D, F]
F=[B, C, E]

public static void dfs(char start) {
if (Ivisited.contains(start)) {

visited.add(start);

System.out.printin(start);

for (char neighbor

b;

dfs(neighbor);

Recurseon C

start: A
Visited (set)
{A B,E,D,F}
start: A
14
Visited (set) 5
17
{A,B,EDFC} 18
19
20
21
22

17

18

: alist.get(start)) {

Adjacency List:

A=[B, D]

B=[A,E, F]

C=[F]
D=[A ]

E=[B, D, F]
F=[B, C, E]

public static void dfs(char start) {
if (Ivisited.contains(start)) {
visited.add(start);
System.out.println(start);

for (char neighbor

b;

dfs(neighbor);

: alist.get(start)) {

Did we really need recursion?
preOrder Tree Traversal with Stack

public static void preOrder(TreeNode tree) {

Stack<TreeNode> myStack = new Stack<>();

myStack.add(tree) ;

while (lmyStack.isEmpty()) {
TreeNode current = myStack.pop();

if (eurrent != null) {

System.ouvt.println(current.info)
myStack.add(current.right);
myStack.add(current.left);

}

Recursion uses the call stack to keep track of nodes
Could also explicitly use a stack, can do the same for DFS
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Stack Abstract Data Structure:

public static void sdemo() {

LIFO List

String[] strs = {"compsci®, "is", “"wonderful'}; LIFO = Last In
Stacke<String> st = new Stack<>();

for(String s : strs) { First Out
st.push(s);
}
while (1 st.isEmpty()) { Push: Add
) System.out.println(st.pop()); element to
H stack
wonderful
is Pop: Get last
compsci element in
2 ompSci 201, Spring 2024, L23; DFS & BFS
19

20

20
21
22
23
24
25
26
27
28
29

21

Initializing Iterative DFS

« Stack stores nodes we have visited/discovered, but
not explored from yet.

« Explore from one current node at a time.

14
15
16
17
18

public static void dfs(char start) {
Stack<Character> toExplore = new Stack<>();
char current = start;
toExplore.add(current);
visited.add(current);

« Stack is LIFO (last-in first-out), so we always
explore from the last node we discovered, depth-
first!

While there are nodes we
have not explored from...

while (!toExplore.isEmpty()) {

mpSci 201, Spring 2024, L23: DFS & BFS

lterative DFS Loop

Explore from the most
recently discovered node..

Look at all neighbors
current = toExplore.pop(); of current node...

for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) f If we haven't seen

previous.put(neighbor, current
visited.add(neighbor);

toExplore.push(neighbor);

} Then
} 1. note how we got here

2. Note we have seen
3. Mark to explore later

CompSci 201, Spring 2024, L23: DFS & BF
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Initialize search at A

start: A Adjacency List:

A=[8,D]
B=[A E, F]
C=[F)
D=[A, £]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

A A}

22

Pop A off the stack

Adjacency List:

toExplore (stack) previous (map) Visited (set)

A}

23

Find B from A

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (map) Visited (set)

B B<-A {A, B}

24
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Find D from A

start: A Adjacency List:

A=[8,D]
B=[A E, F]
C=[F]
D=[A, £]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

D B<-A {A, B,D}
B D<A

25
Pop D off the stack
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[8, D, F]
F=[B, C, E]
toExplore (stack) previous (map) Visited (set)
B B<-A {A, B, D}
D<-A
26
Find E from D
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (stack) previous (map) Visited (set)
E B<-A {A, B, D, E}
B D<-A
E<-D
27
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Pop E off the stack

start: A Adjacency List:

A=[8,D]
B=[A E, F]
C=[F]
D=[A, £]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

B B<-A {A, B,D, E}
D<-A
E<-D

28
Find F from E
start: A Adjacency List:
A=[B, D]
B=[A, E, ]
c=IF]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (stack) previous (map) Visited (set)
F B<-A {A,B,D,E F}
B D<-A
E<-D
F<E
29
Pop F off the stack
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
c=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (stack) previous (map) Visited (set)
B B<-A {A,B,D, E, F}
D<-A
E<-D
F<-E
30

4/11/2024
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Find C from F

Adjacency List:

A=[8,D]
B=[A E, F]
C=[F)
D=[A, £]
E=[B, D, F]
F=[B, C, E]

previous (Map) Visited (set)

B<-A {A,B,D,EFC}
D<-A
E<-D
F<-E
C<-F

Pop C off the stack

Adjacency List:
A=[8, D]

previous (map) Visited (set)

B<-A {A,B,D,EFC}
D<-A
E<-D
F<-E
C<-F

Pop B off the stack

start: A
toExplore (stack)
C
B
31
start: A
toExplore (stack)
B
start: A
toExplore (stack)

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

previous (map) Visited (set)

B<-A {A,B,D,EFC}
D<-A
E<-D
F<-E
C<-F

4/11/2024
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34

36

37

DFS Search Tree

start: A Adjacency List:

A=[8, D]
B=[A E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

Can find paths from A
to X by following

previous backwards

from X

20
21
22
23
24
25
26
27
28
29

20
21
22
23
24
25
26
27
28
29

B<-A {A,B,D,E,F,C}
D<-A
E<-D
F<-E
C<-F

SompSci 201, Spring

Path from A to C:
C<-F<E<D

DFS Complexity?

While loop over all
nodes (N), potentially?

while (!toExplore.isEmpty( {
current = toExplore.pop();
for (char neighbor : alist.get(current)) {
if (!visited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.push(neighbor);

Loop over edges (M)

} Seems like O(NM),
} but...

DFS Complexity?

while (!toExplore.isEmpty()) { Loop over edges
current = toExplore.pop(); adjacent to currentnode
for (char neighbor : alist.gét(current)) {
if (!visited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.push(neighbor);

} Pop each of N nodes at most once.
} Loop over neighbors of each node exactly
once, considers each edge twice.

N+2M is O(N+M).

4/11/2024
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L22-WOTO2-GeneralDFS-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.
* Required
NetlD * [T}

solutions

2

After running DFS, which of these data structures would you use to get the actual path from a
start vertex to a destination? * [T}



9 public class DFS {

10 public static Map<Character, Set<Character>> alist;
11 public static Set<Character> visited;
12 public static Map<Character, Character> previous;
O alList
O visited
@ previous

O none of the above

3

The best explanation of the loop on line 22 is... * [T}

20 while (!toExplore.isEmpty()) {

21 current = toExplore.pop();
22 for (char neighbor : alList.get(current)) {
23 if (lvisited.contains(neighbor)) {

O Check all nodes reachable by one edge from any visited nodes

@ Check all nodes reachable by one edge from the node we are exploring



O Check all of the unvisited nodes

4

Same code. The while loop on line 20 might have fewer than N iterations (when there are N
nodes in the graph) when... * [T}

20 while (!toExplore.isEmpty()) {

21 current = toExplore.pop();
22 for (char neighbor : alist.get(current)) {
23 if (!visited.contains(neighbor)) {

O Some nodes are connected to many other nodes in the graph
@ Some nodes are not reachable from others

O Never, the while loop should always have N iterations

5

What best describes the runtime complexity of DFS using a stack and hash-based data
structures? Let N be the number of vertices and M be the number of edges. * [1)



20 while (!toExplore.isEmpty()) {

21 current = tokxplore.pop();
22 for (char neighbor : alList.get(current)) {
23 if (lvisited.contains(neighbor)) {
24 previous.put(neighbor, current);
25 visited.add(neighbor);
26 toExplore.push(neighbor);
27 ¥
O o
@ oN+Mm)
() onmy

6

True or false: This dfs algorithm will always find the shortest path from the start node to other
nodes * [T}
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lterative Breadth-First
Search (BFS)

38

Queue: A FIFO List

« Both add and remove are O(1)
+ Add at end of LinkedList

+ Remove from front of LinkedList
LinkedList implements
the Queue interface.

public static void gdemo() {
string[] strs = {"compsci’, "iss™fwonderful’}; [ compsci
Queue<String> g = new LinkedList<>(); is
for(String s : strs) {
g.add(s); wonderful

while (! g.isEmpty()) {
System.out.printin(g.remove());

39

Level Order Tree Traversal
using a Queue

public static void levelOrder(TreeNode tree) {
Queue<TreeNode> queue = new LinkedListe>();
queue.add(tree); 8
while (lgueve.isEmpty()) {

TreeNode current = queve.remove(); 4
if (current != null) { 12
System.out.println(current.info); 6
gueve.add(current. left); \
gueve.add(current.right); 10
i 15
3
}
Idea: Use a queue to keep track of nodes.
First-in first-out, nodes visited in level order
]

4/11/2024
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41

42

43

Depth-First Search for Solving Maze

Always explore (recurse
on) a new (unvisited)
adjacent vertex if
possible.

If impossible, backtrack
to the most recent
vertex adjacent to an
unvisited vertex and
continue.

Breadth-First Search for Solving Maze

Explore all your
neighbors (adjacent
vertices) before you visit
any of your neighbors’
neighbors.

Looking for the shortest
path/solution.

Queue = BFS, Stack = DFS

BFS: FIFO Exploration

search all locations one-

away from start, then
two-away, ...

DFS: LIFO Exploration

Search path as far as
possible, backtrack if

need to another branch...

4/11/2024
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Initializing Iterative BFS

« Queue stores nodes we have visited/discovered, but
not explored from yet.

« Explore from one current node at a time.

32
33
34
35
36

public static void bfs(char start) {

Queue<Character> toExplore = new LinkedList<();
char current = start;

visited.add(current);

toExplore.add(current);

« Queue is FIFO (first-in first-out), so we always
explore from the first/closest (unvisited) node we
discovered, breadth-first!

44

While there are nodes we
have not explored from...

lterative BFS Loop

Explore from the closest
discovered node...

38 while (!toExplore.isEmpty()) { Look at all neighbors
39 current = toExplore.remove(); of current node...
40 for (char neighbor : alist.get(current)) {
41 if (!visited.contains(neighbor)) {
42 previous.put(neighbor, current);
43 visited.add(neighbor); If we haven't seen
44 toExplore.add(neighbor); them before..
45 ¥ Then:
46 1 1. Note how we got here
47 } 2. Note we have seen
3. Mark to explore later
mpSei r
45
start: A Adjacency List:

A=[B, D]

B=[A, E, F]

c=[F]

D=[A, E]

E=[B, D, F]

F=[B, C, E]

toExplore (queue) previous (map) Visited (set)
A A}
mpSei r
46

4/11/2024
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Remove A from the queue

start: A Adjacency List:
A=[B, D]
B=[A,E, F]
C=[F)

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (Map) Visited (set)

A}

47

Find B from A

start: A Adjacency List:
A=[B, D]
B=[A E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (map) Visited (set)

B B<-A {A, B}

48

Find D from A

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (map) Visited (set)

B B<-A {A, B, D}

D D<-A
Note the difference,
add to end of queue!

49

4/11/2024
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Remove B from queue

B was first in,
start: A B is first out Adjacency List:
A=[B, D]

B=[A, E, ]

C=IF]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (Map) Visited (set)

D B<-A {A, B, D}

D<-A

50
Find E from B
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (map) Visited (set)
D B<-A {A, B, D, E}
E D<-A
E<-B
pSoi
51
Find F from B
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, £]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (map) Visited (set)
D B<-A {A,B,D,E, F}
E D<-A
F E<-B
F<-B
—
52

4/11/2024
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Remove D from queue

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (Map) Visited (set)
E B<A {A B,D,E, F}
F D<-A
E<-B
F<-B

53
Remove E from queue
Adjacency List:
A=[B, D]
B=[A, E, ]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (map) Visited (set)
F B<-A {A,B,D,E F}
D<-A
E<-B
F<-B
54
Remove F from queue
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F)
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (map) Visited (set)
B<-A {A, B,D,E, F}
D<-A
E<-B
F<-B
55
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57

58

toExplore (queue)

C

Find C from F

previous (Map)

B<-A
D<-A
E<-B
F<-B
C<-F

Adjacency List:

A=[8,D]
B=[A E, F]
C=[F)
D=[A, £]
E=[B, D, F]
F=[B, C, E]

Visited (set)

{A,B,D,EF,C}

Remove C from queue

toExplore (queue)

start: A

previous (map)

B<-A
D<-A
E<-B
F<-B
C<-F

Adjacency List:

Visited (set)

A, 8,D,EF C}

BFS Search Tree

toExplore (queue)

previous (map)

B<-A
D<-A
E<-B
F<-B
C<-F

Adjacency List:

A=[8, D]
B=[A, E, ]
C=[F]
D=[A, £]
E=[B, D, F]
F=[8, C, E]

Visited (set)

{A,B,D,EFC}

4/11/2024
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Comparing DFS and BFS Search

previous (map)
Length 4 path
fromAtoC B<-A
D<-A
E<-D
F<-E
C<-F

59

Trees

Length 3 path
fromAto C,
shorter!

previous (map)

B<-A
D<-A
E<-B
F<-B
C<-F

Pathfinding Properties

» DFS and BFS both find valid paths to all nodes

reachable from the start.

« Can return early if you only want to find a path to a

specific target node

« BFS finds the shortest path to every reachable
node, DFS does not guarantee this.

60

4/11/2024
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L23-WOTO2-BFS-5p24

Hi, Alexander. When you submit this form, the owner will see your name and email address.
* Required
NetlD * [T}

solutions

2

True or false: These global data structures will not work for / need to be changed for BFS vs
DFS.* [0}



9 public class DFS {

10 public static Map<Character, Set<Character>> alist;
11 public static Set<Character> visited;
12 public static Map<Character, Character> previous;

3

Which line of code best explains what is different
about BFS vs. DFS algorithmically? * [T}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

AR

public static void bfs(char start) {

1

Queue<Character> toExplore = new LinkedlList<>();
char current = start;

visited.add(current);

toExplore.add(current);

while (!toExplore.isEmpty()) {
current = toExplore.remove();
for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.add(neighbor);
}
}
¥



O Line 41

4

What best explains why the while loop on line 38
only considers each node in the graph once / is
O(N)? * [0

O Because Queues do not store duplicates
O Because we only consider each node as a "neighbor" once

@ Because of the visited Set

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
aR

public static void bfs(char start) {
Queue<Character> toExplore = new LinkedlList<>();
char current = start;
visited.add(current);
toExplore.add(current);

while (!toExplore.isEmpty()) {
current = toExplore.remove();
for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.add(neighbor);



If there are N nodes and M edges in the graph and
the graph is connected, how many total times might

line 41 be executed? *

6

03

32
33
34
35

37
38
39
40
41
42
43
44
45
46

47
AR

public static void bfs(char start) {
Queue<Character> toExplore = new LinkedlList<>();
char current = start;
visited.add(current);
toExplore.add(current);

while (!toExplore.isEmpty()) {
current = toExplore.remove();
for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.add(neighbor);

True or false: BFS can find shortest paths from the start node to all other reachable nodes. *

03

@ True
O False
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True or false: BFS explores all possible paths from the start node to all other reachable nodes. *
0

O True
@ False
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