L23: DFS & BFS

Alex Steiger
CompSci 201: Spring 2024
4/8/2024

Logistics, coming up

» Today, Monday, April 8
« Project P5: Huffman due
« Project P6: Route out by tomorrow

* This Wednesday, April 10
« APT Quiz 2 due
« Covers linked list and trees
« Practice quiz from discussion is similar
» No regular APTs due this week, just the quiz

Today's agenda

* General depth-first search (DFS)

« Seen it on grid graphs, how about arbitrary graphs?

* Introduce breadth-first search (BFS)

4/11/2024

Depth-First Search in
General Graphs

Pathfinding / Graph Search

R.0.8.0.T. Co

Is there a way to get from point A to
point B?

» Maps/directions

* Video games

» Robot motion planning
« Etc.

Recall: Grid Graph, Maze Example

public class MazeDemo {
private int mySize; // dimension of maze
private boolean[][] north; /# is there a wall to north of cell i, j
private boolean[][] east; . P
private boolean[][] south;
private boolean[][] west;

» Example: 10 x 10 grid
« Edge = no wall, no edge =
wall.

« Look for a path from start
(lower left) to middle.

4/11/2024

Depth-First Search for Solving Maze

Always explore (recurse on) a new (unvisited) adjacent
vertex if possible.

If nothing new (unvisited)

vertex to explore:

« backtrack to the most
recent vertex adjacent
to an unvisited vertex,
and then continue.

< if no such vertex, maze
is unsolvable.

7
Representations for Arbitrary Graphs
(not only Grid Graphs)
Adjacency List G o Adjacency Matrix
Vertices Adjacent vertices (edges) A B c D
A A 1
B cbD B 11
c B c 1
D B D 1
zyBook
Efficient Adjacency “List” Using
Double Hashing
* HashMap<Vertex, HashSet<Vertex>> alist
* Vertex type can be Integer, char, String, custom object,
.., needs to have good hashCode() and equals().
Veﬂi}c‘es Adjacent vertices (edges) . aLiSt.put('A", new HashSet())
Q) 8) s - « alist.get(‘A’).add(‘B’)
« alist.get(‘A’).add(‘C’)
@G @ -

0(1) time to check if nodes are connected or get the
neighbors of a node (assuming good hashCode)

4/11/2024

10

11

12

Graph Search Data Structures

1) Have an adjacency list for the graph
2) Keep track of visited nodes in a set

3) Keep track of the previous node: During search,
how did | get to this node?

9 public class DFS

19 public static Map<Character, Set<Character»> alist;
11 public static Set<Characters visited;
12 public static Map<Character, Character> previous;

» Example has Character nodes, could be any label
for the nodes.

« Storing as instance variables, accessible in
methods.

Recursive DFS on a General Graph:

Visiting all nodes

Base case: If
. 5 already visited,
14 public static void dfs(char start) backtrack

15 if (lvisited.contains(start)) {

16 visited.add(start); Else, vis‘w’t this
17 start); node

System.out.println(

18 for (char neighbor : alist.get(start)) {

19 dfs(neighbor);

20 }

21 } And explore its
22 } neighbors, adjacent

nodes

Initialize search at A

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

14 public static void dfs(char start) {

- 15 if (lvisited.contains(start)) {
Visited (set) 16 visited.add(start);
17 System.out.println(start);
{A} 18 for (char neighbor : alist.get(start)) {
19 dfs(neighbor);
20 ¥
21 3}
22 }

4/11/2024

13

14

15

start: A

Visited (set)

{A, B}

start: A

Visited (set)

{A, B, E}

start: A

Visited (set)

{A, B, E, D}

Recurse on B

14

16
17
18
19
20
21
22

Adjacency List:

A=[B,
B=[A,
C=[F]
D=[A,

0]
E F]

E]

E=[B, D, F]
F=[B, C, E]

public static void dfs(char start) {
if (lvisited.contains(start)) {

visited.add(start

3}

System.out.printin(start);

for (char neighbo
dfs(neighbor)
¢

Recurseon E

14

16
17
18
19
20
21
22

r @ alist.get(start)) {

Adjacency List:
A=[B, D]

B=[A, E,
C=[F]

D=[A, E]
E=[B, D,
F=[B, C,

F]

F]
E]

public static void dfs(char start) {

if (lvisited.contains(start)) {
visited.add(start);
System.out.println(start);
for (char neighbor

b;

dfs(neighbor);

Recurseon D

14

16
17
18
19
20
21
22

: alist.get(start)) {

Adjacency List:

A=[8, D]

B=[A, E, F]

C=[F]
D=[A, £]

E=[B, D, F]

F=[8, C, E]

public static void dfs(char start) {
if (lvisited.contains(start)) {
visited.add(start);
System.out.println(start);

for (char neighbor

i

dfs(neighbor);

: alist.get(start)) {

4/11/2024

Backtrack to E, recurse on F

14

16
17
18
19
20
21
22

Adjacency List:
A=[B, D]
B=[A,E, F]

C=[F)

D=[A, E]
E=[B, D, F]
F=[B, C, E]

public static void dfs(char start) {
if (Ivisited.contains(start)) {

visited.add(start);

System.out.printin(start);

for (char neighbor

b;

dfs(neighbor);

Recurseon C

start: A
Visited (set)
{A B,E,D,F}
start: A
14
Visited (set) 5
17
{A,B,EDFC} 18
19
20
21
22

17

18

: alist.get(start)) {

Adjacency List:

A=[B, D]

B=[A,E, F]

C=[F]
D=[A]

E=[B, D, F]
F=[B, C, E]

public static void dfs(char start) {
if (Ivisited.contains(start)) {
visited.add(start);
System.out.println(start);

for (char neighbor

b;

dfs(neighbor);

: alist.get(start)) {

Did we really need recursion?
preOrder Tree Traversal with Stack

public static void preOrder(TreeNode tree) {

Stack<TreeNode> myStack = new Stack<>();

myStack.add(tree) ;

while (lmyStack.isEmpty()) {
TreeNode current = myStack.pop();

if (eurrent != null) {

System.ouvt.println(current.info)
myStack.add(current.right);
myStack.add(current.left);

}

Recursion uses the call stack to keep track of nodes
Could also explicitly use a stack, can do the same for DFS

4/11/2024

Stack Abstract Data Structure:

public static void sdemo() {

LIFO List

String[] strs = {"compsci®, "is", “"wonderful'}; LIFO = Last In
Stacke<String> st = new Stack<>();

for(String s : strs) { First Out
st.push(s);
}
while (1 st.isEmpty()) { Push: Add
) System.out.println(st.pop()); element to
H stack
wonderful
is Pop: Get last
compsci element in
2 ompSci 201, Spring 2024, L23; DFS & BFS
19

20

20
21
22
23
24
25
26
27
28
29

21

Initializing Iterative DFS

« Stack stores nodes we have visited/discovered, but
not explored from yet.

« Explore from one current node at a time.

14
15
16
17
18

public static void dfs(char start) {
Stack<Character> toExplore = new Stack<>();
char current = start;
toExplore.add(current);
visited.add(current);

« Stack is LIFO (last-in first-out), so we always
explore from the last node we discovered, depth-
first!

While there are nodes we
have not explored from...

while (!toExplore.isEmpty()) {

mpSci 201, Spring 2024, L23: DFS & BFS

lterative DFS Loop

Explore from the most
recently discovered node..

Look at all neighbors
current = toExplore.pop(); of current node...

for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) f If we haven't seen

previous.put(neighbor, current
visited.add(neighbor);

toExplore.push(neighbor);

} Then
} 1. note how we got here

2. Note we have seen
3. Mark to explore later

CompSci 201, Spring 2024, L23: DFS & BF

4/11/2024

Initialize search at A

start: A Adjacency List:

A=[8,D]
B=[A E, F]
C=[F)
D=[A, £]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

A A}

22

Pop A off the stack

Adjacency List:

toExplore (stack) previous (map) Visited (set)

A}

23

Find B from A

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (map) Visited (set)

B B<-A {A, B}

24

4/11/2024

Find D from A

start: A Adjacency List:

A=[8,D]
B=[A E, F]
C=[F]
D=[A, £]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

D B<-A {A, B,D}
B D<A

25
Pop D off the stack
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[8, D, F]
F=[B, C, E]
toExplore (stack) previous (map) Visited (set)
B B<-A {A, B, D}
D<-A
26
Find E from D
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (stack) previous (map) Visited (set)
E B<-A {A, B, D, E}
B D<-A
E<-D
27

4/11/2024

Pop E off the stack

start: A Adjacency List:

A=[8,D]
B=[A E, F]
C=[F]
D=[A, £]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

B B<-A {A, B,D, E}
D<-A
E<-D

28
Find F from E
start: A Adjacency List:
A=[B, D]
B=[A, E,]
c=IF]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (stack) previous (map) Visited (set)
F B<-A {A,B,D,E F}
B D<-A
E<-D
F<E
29
Pop F off the stack
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
c=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (stack) previous (map) Visited (set)
B B<-A {A,B,D, E, F}
D<-A
E<-D
F<-E
30

4/11/2024

10

Find C from F

Adjacency List:

A=[8,D]
B=[A E, F]
C=[F)
D=[A, £]
E=[B, D, F]
F=[B, C, E]

previous (Map) Visited (set)

B<-A {A,B,D,EFC}
D<-A
E<-D
F<-E
C<-F

Pop C off the stack

Adjacency List:
A=[8, D]

previous (map) Visited (set)

B<-A {A,B,D,EFC}
D<-A
E<-D
F<-E
C<-F

Pop B off the stack

start: A
toExplore (stack)
C
B
31
start: A
toExplore (stack)
B
start: A
toExplore (stack)

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

previous (map) Visited (set)

B<-A {A,B,D,EFC}
D<-A
E<-D
F<-E
C<-F

4/11/2024

11

34

36

37

DFS Search Tree

start: A Adjacency List:

A=[8, D]
B=[A E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (stack) previous (Map) Visited (set)

Can find paths from A
to X by following

previous backwards

from X

20
21
22
23
24
25
26
27
28
29

20
21
22
23
24
25
26
27
28
29

B<-A {A,B,D,E,F,C}
D<-A
E<-D
F<-E
C<-F

SompSci 201, Spring

Path from A to C:
C<-F<E<D

DFS Complexity?

While loop over all
nodes (N), potentially?

while (!toExplore.isEmpty({
current = toExplore.pop();
for (char neighbor : alist.get(current)) {
if (!visited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.push(neighbor);

Loop over edges (M)

} Seems like O(NM),
} but...

DFS Complexity?

while (!toExplore.isEmpty()) { Loop over edges
current = toExplore.pop(); adjacent to currentnode
for (char neighbor : alist.gét(current)) {
if (!visited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.push(neighbor);

} Pop each of N nodes at most once.
} Loop over neighbors of each node exactly
once, considers each edge twice.

N+2M is O(N+M).

4/11/2024

12

L22-WOTO2-GeneralDFS-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.
* Required
NetlD * [T}

solutions

2

After running DFS, which of these data structures would you use to get the actual path from a
start vertex to a destination? * [T}

9 public class DFS {

10 public static Map<Character, Set<Character>> alist;
11 public static Set<Character> visited;
12 public static Map<Character, Character> previous;
O alList
O visited
@ previous

O none of the above

3

The best explanation of the loop on line 22 is... * [T}

20 while (!toExplore.isEmpty()) {

21 current = toExplore.pop();
22 for (char neighbor : alList.get(current)) {
23 if (lvisited.contains(neighbor)) {

O Check all nodes reachable by one edge from any visited nodes

@ Check all nodes reachable by one edge from the node we are exploring

O Check all of the unvisited nodes

4

Same code. The while loop on line 20 might have fewer than N iterations (when there are N
nodes in the graph) when... * [T}

20 while (!toExplore.isEmpty()) {

21 current = toExplore.pop();
22 for (char neighbor : alist.get(current)) {
23 if (!visited.contains(neighbor)) {

O Some nodes are connected to many other nodes in the graph
@ Some nodes are not reachable from others

O Never, the while loop should always have N iterations

5

What best describes the runtime complexity of DFS using a stack and hash-based data
structures? Let N be the number of vertices and M be the number of edges. * [1)

20 while (!toExplore.isEmpty()) {

21 current = tokxplore.pop();
22 for (char neighbor : alList.get(current)) {
23 if (lvisited.contains(neighbor)) {
24 previous.put(neighbor, current);
25 visited.add(neighbor);
26 toExplore.push(neighbor);
27 ¥
O o
@ oN+Mm)
() onmy

6

True or false: This dfs algorithm will always find the shortest path from the start node to other
nodes * [T}

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

lterative Breadth-First
Search (BFS)

38

Queue: A FIFO List

« Both add and remove are O(1)
+ Add at end of LinkedList

+ Remove from front of LinkedList
LinkedList implements
the Queue interface.

public static void gdemo() {
string[] strs = {"compsci’, "iss™fwonderful’}; [compsci
Queue<String> g = new LinkedList<>(); is
for(String s : strs) {
g.add(s); wonderful

while (! g.isEmpty()) {
System.out.printin(g.remove());

39

Level Order Tree Traversal
using a Queue

public static void levelOrder(TreeNode tree) {
Queue<TreeNode> queue = new LinkedListe>();
queue.add(tree); 8
while (lgueve.isEmpty()) {

TreeNode current = queve.remove(); 4
if (current != null) { 12
System.out.println(current.info); 6
gueve.add(current. left); \
gueve.add(current.right); 10
i 15
3
}
Idea: Use a queue to keep track of nodes.
First-in first-out, nodes visited in level order
]

4/11/2024

13

41

42

43

Depth-First Search for Solving Maze

Always explore (recurse
on) a new (unvisited)
adjacent vertex if
possible.

If impossible, backtrack
to the most recent
vertex adjacent to an
unvisited vertex and
continue.

Breadth-First Search for Solving Maze

Explore all your
neighbors (adjacent
vertices) before you visit
any of your neighbors’
neighbors.

Looking for the shortest
path/solution.

Queue = BFS, Stack = DFS

BFS: FIFO Exploration

search all locations one-

away from start, then
two-away, ...

DFS: LIFO Exploration

Search path as far as
possible, backtrack if

need to another branch...

4/11/2024

14

Initializing Iterative BFS

« Queue stores nodes we have visited/discovered, but
not explored from yet.

« Explore from one current node at a time.

32
33
34
35
36

public static void bfs(char start) {

Queue<Character> toExplore = new LinkedList<();
char current = start;

visited.add(current);

toExplore.add(current);

« Queue is FIFO (first-in first-out), so we always
explore from the first/closest (unvisited) node we
discovered, breadth-first!

44

While there are nodes we
have not explored from...

lterative BFS Loop

Explore from the closest
discovered node...

38 while (!toExplore.isEmpty()) { Look at all neighbors
39 current = toExplore.remove(); of current node...
40 for (char neighbor : alist.get(current)) {
41 if (!visited.contains(neighbor)) {
42 previous.put(neighbor, current);
43 visited.add(neighbor); If we haven't seen
44 toExplore.add(neighbor); them before..
45 ¥ Then:
46 1 1. Note how we got here
47 } 2. Note we have seen
3. Mark to explore later
mpSei r
45
start: A Adjacency List:

A=[B, D]

B=[A, E, F]

c=[F]

D=[A, E]

E=[B, D, F]

F=[B, C, E]

toExplore (queue) previous (map) Visited (set)
A A}
mpSei r
46

4/11/2024

15

Remove A from the queue

start: A Adjacency List:
A=[B, D]
B=[A,E, F]
C=[F)

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (Map) Visited (set)

A}

47

Find B from A

start: A Adjacency List:
A=[B, D]
B=[A E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (map) Visited (set)

B B<-A {A, B}

48

Find D from A

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (map) Visited (set)

B B<-A {A, B, D}

D D<-A
Note the difference,
add to end of queue!

49

4/11/2024

16

Remove B from queue

B was first in,
start: A B is first out Adjacency List:
A=[B, D]

B=[A, E,]

C=IF]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

toExplore (queue) previous (Map) Visited (set)

D B<-A {A, B, D}

D<-A

50
Find E from B
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (map) Visited (set)
D B<-A {A, B, D, E}
E D<-A
E<-B
pSoi
51
Find F from B
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, £]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (map) Visited (set)
D B<-A {A,B,D,E, F}
E D<-A
F E<-B
F<-B
—
52

4/11/2024

17

4/11/2024

Remove D from queue

start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (Map) Visited (set)
E B<A {A B,D,E, F}
F D<-A
E<-B
F<-B

53
Remove E from queue
Adjacency List:
A=[B, D]
B=[A, E,]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (map) Visited (set)
F B<-A {A,B,D,E F}
D<-A
E<-B
F<-B
54
Remove F from queue
start: A Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F)
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (queue) previous (map) Visited (set)
B<-A {A, B,D,E, F}
D<-A
E<-B
F<-B
55

18

56

57

58

toExplore (queue)

C

Find C from F

previous (Map)

B<-A
D<-A
E<-B
F<-B
C<-F

Adjacency List:

A=[8,D]
B=[A E, F]
C=[F)
D=[A, £]
E=[B, D, F]
F=[B, C, E]

Visited (set)

{A,B,D,EF,C}

Remove C from queue

toExplore (queue)

start: A

previous (map)

B<-A
D<-A
E<-B
F<-B
C<-F

Adjacency List:

Visited (set)

A, 8,D,EF C}

BFS Search Tree

toExplore (queue)

previous (map)

B<-A
D<-A
E<-B
F<-B
C<-F

Adjacency List:

A=[8, D]
B=[A, E,]
C=[F]
D=[A, £]
E=[B, D, F]
F=[8, C, E]

Visited (set)

{A,B,D,EFC}

4/11/2024

19

Comparing DFS and BFS Search

previous (map)
Length 4 path
fromAtoC B<-A
D<-A
E<-D
F<-E
C<-F

59

Trees

Length 3 path
fromAto C,
shorter!

previous (map)

B<-A
D<-A
E<-B
F<-B
C<-F

Pathfinding Properties

» DFS and BFS both find valid paths to all nodes

reachable from the start.

« Can return early if you only want to find a path to a

specific target node

« BFS finds the shortest path to every reachable
node, DFS does not guarantee this.

60

4/11/2024

20

L23-WOTO2-BFS-5p24

Hi, Alexander. When you submit this form, the owner will see your name and email address.
* Required
NetlD * [T}

solutions

2

True or false: These global data structures will not work for / need to be changed for BFS vs
DFS.* [0}

9 public class DFS {

10 public static Map<Character, Set<Character>> alist;
11 public static Set<Character> visited;
12 public static Map<Character, Character> previous;

3

Which line of code best explains what is different
about BFS vs. DFS algorithmically? * [T}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

AR

public static void bfs(char start) {

1

Queue<Character> toExplore = new LinkedlList<>();
char current = start;

visited.add(current);

toExplore.add(current);

while (!toExplore.isEmpty()) {
current = toExplore.remove();
for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.add(neighbor);
}
}
¥

O Line 41

4

What best explains why the while loop on line 38
only considers each node in the graph once / is
O(N)? * [0

O Because Queues do not store duplicates
O Because we only consider each node as a "neighbor" once

@ Because of the visited Set

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
aR

public static void bfs(char start) {
Queue<Character> toExplore = new LinkedlList<>();
char current = start;
visited.add(current);
toExplore.add(current);

while (!toExplore.isEmpty()) {
current = toExplore.remove();
for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.add(neighbor);

If there are N nodes and M edges in the graph and
the graph is connected, how many total times might

line 41 be executed? *

6

03

32
33
34
35

37
38
39
40
41
42
43
44
45
46

47
AR

public static void bfs(char start) {
Queue<Character> toExplore = new LinkedlList<>();
char current = start;
visited.add(current);
toExplore.add(current);

while (!toExplore.isEmpty()) {
current = toExplore.remove();
for (char neighbor : alist.get(current)) {
if (lvisited.contains(neighbor)) {
previous.put(neighbor, current);
visited.add(neighbor);
toExplore.add(neighbor);

True or false: BFS can find shortest paths from the start node to all other reachable nodes. *

03

@ True
O False

7

True or false: BFS explores all possible paths from the start node to all other reachable nodes. *
0

O True
@ False

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

