| 2: Shortest Paths in
Weighted Graphs

Alex Steiger
CompSci 207: Spring 2024
4/10/2024

4/10/24

Dutch computer scientist, 1930 — 2002.
PhD in 1952, Turing award in 1972.

Originally planned to study law, switched to
physics, then to computer science.

“‘After having programmed for some three
%/ears...l hadto make up my mind, either
0..become a...theoretical physicist, or to
..become..... what? A programmer? But was
that a respectable profession?.. Full of
misgivings | knocked on Van Wijngaarden's
office door, asking him whether’| Could "speak
to him for a moment”; when | left his office a
number of hours later, | was another person.
For after having listened to my problems
patiently..he went on to explain quietly that
automatic computers were here 1o stay, that
we were#ust at the beginning and could not |
be one of the persons calledto make
programming a respectable discipline in the
years to come?

Person in CS: Edsger Dijkstra

CompSci 201, Spring 2024, L24: Shortest Paths

Logistics, coming up

« Today, Wednesday, April 10
« APT Quiz 2 due
« Covers linked list and trees
« No regular APTs due this week, just the quiz

* Next Wednesday, 4/17/

« Midterm exam 3
* Practice exams coming soon to Canvas
« APT 9 extended to Thursday 4/20

Midterm Exam 3

 Logistics:
« 60 minutes, in-person, multiple-choice + fill-in-blank
« Can bring 1 reference/notes page

 Topics could include:
* Trees, binary search trees, binary heaps, recursion

« AVL trees: High-level concept of balance factor/rotations,
yes, details of performing rotations, no.

» Greedy, Huffman
« Graphs, DFS, BFS, Dijkstra’s

Today's agenda

* Finish WordLadder Problem

« Shortest paths in weighted graphs:
* Dijkstra’s algorithm

-xample WordLadder Problem

A transformation sequence from word beginWord to word
endWord using a dictionary wordList is a sequence of
words beginWord —> s; —=> s, —> ... —> s, such that:

e Every adjacent pair of words differs by a single letter.

e Every s; for 1 <= i <= k isin wordList . Note that
beginWord does not need to be in wordList. n

e s, == endWord Live coding

Given two words, beginWord and endWord, and a dictionary
wordList , return the number of words in the shortest
transformation sequence from beginWord to endWord, or
0 if no such sequence exists.

leetcode.com/problems/word-ladder/description/
4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths

https://leetcode.com/problems/word-ladder/description/

L24-WOTO1-WordLadder-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.
* Required
NetlD * [T}

solutions

2

Suppose you have:

beginWord = "cat"

endWord = "dog"

wordList = ["hot","dot","dog","lot","log","cog

, "cot"]

The length of the shortest word ladder is... * [T}

3

Consider this makeGraph method, part of a correct solution to the wordLadder problem.
Assume the oneOff method correctly returns true if two strings differ by a single character and
false otherwise, and runs in O(1) time.

If N is the length of the wordList, what is the asymptotic runtime complexity of the makeGraph
method as a function of N? * [1}

23
24
25
26
27
28
29
30
31
32
33
34

private Map<String, HashSet<String>> makeGraph(List<String> wordList) {
Map<String, HashSet<String>> alist = new HashMap<>();
for (String w: wordList) {
aList.put(w, new HashSet<>());
for (String other: wordList) {
if (oneOff(w, other)) {
aList.get(w).add(other);

}

return alist;

O o)
() om
(O O(N log(N))

@ on~2)

() O(NA2 log(N))

4

Consider this code, part of a correct solution to the wordLadder problem. It works with an
adjacency list representation alList such as would be generated by the makeGraph method.

If there are N words in total in the wordList, and each word can be transformed into at most a
constant number O(1) other words by changing a single character, then what is the runtime
complexity of this code? * [1}

W oo =~J

10
11
12
13 v
14 ~
15
16
17
18
19
20
21 1

O om

@ omn)

(O O(N log(N))
() oNA2)

() o(N~2 log(

Queue<String> toExplore = new LinkedList<>();
Map<String, Integer> ladderLength = new HashMap<>();
toExplore.add(beginWord); ladderLength.put(beginWord, value:1);

while (toExplore.size() > @) {
String word = toExplore.remove();
for (String other : alist.get(word)) {
if (!ladderLength.containsKey(other)) {
ladderLength.put(other, ladderLength.get(word)+1);
toExplore.add(other);

}
}
return ladderLength.getOrDefault(endWord, defaultValue:0);

N))

For the approach to the wordLadder problem outlined above, what dominates the runtime
complexity of the algorithm? Assume that each word is at most a constant length and that
each word can be transformed into at most a constant number of other words. * [1}

@ Building the graph takes most of the time

O Running the search on the graph takes most of the time

B8 Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

Weighted Graphs ana
Dijkstra’s Algorithm

Weighted Graphs

Each edge has an associated weight representing
cost, distance, etc.

In mapping
applications, maybe
one road is twice as
long as another.

Bordeaux

Zybook chapter 24

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths

°roject 6: Route

Durham, NC = Seattle WA,
~2800 miles

ps Directions

Project 6 Google Ma

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 10

°roject 6: Route Demo

Partner project, can work (and submit) with one other
person. Make sure to read the directions on using Git
with a partner, and to submit together on
gradescope.

GraphProcessor: Implement algorithms with real-
world graph data.

No analysis for this project.

Shortest weighted paths?

* BFS gives shortest paths in unweighted graphs.

« Modify BFS to account for weights; called Dijkstra’s
algorithm.

* BFS = queue, Dijkstra’'s = ...
 Priority queue!

Exploring a node with Dijkstra’s
Algorithm, Pseudocode

e

While unexplored nodes remain .7
» Explore current = the closest I
unexplored node SN .
» For each neighbor: et
 Update shortest path to A by DS
neighbor if shorter to go) AN
through current i\ AN
AN

wikipedia.org/wiki/Dijkstra%27s_algorithm

Just like BFS (explore closer nodes first) except...
now we need to account for weights.

“Textbook” Dijkstra Initialization

* Initialize distances to:
e O for the start node,
* Infinity for everything else

» Add all nodes to a priority queue, using their
distance as the priority

4 public Map<Character, Integer> textbookDijkstra(char start, Map<Character, List<Character>> alList) {
5 Map<Character, Integer> distance = new HashMap<>();

6 for (char c : alList.keySet()) { distance.put(c, Integer.MAX_VALUE); }

7 distance.put(start, value:0);

8 Comparator<Character> comp = (a, b) -> distance.get(a) - distance.get(b);

9 PriorityQueue<Character> toExplore = new PriorityQueue<>(comp);
10 toExplore.addAll(alList.keySet());

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 14

"Textbook” Dijkstra Exploration

* While there are unexplored nodes:
« Get the closest unexplored node to the start
 Look at all neighbors:

* If the path through current is shorter:
« Update distance, update priority in priority

queue

12 while (toExplore.size() > 0) {

13 char current = toExplore.remove();

14 for (char neighbor : alList.get(current)) {

15 int newDist = distance.get(current) + getWeight(current, neighbor);
16 if (newDist < distance.get(neighbor)) {

17 distance.put(neighbor, newDist);

18 //toExplore.decreasePriority(neighbor);
19 }

20 }

21 }

22 return distance;

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 15

28 v
29
30
31
32
33

Practical Dijkstra Initialization

Like the previous implementation, but only add

vertices to the g
reached/visited.

public Map<Character, Integer> stdDijkstra(char start, Map<Character, List<Character>> alList) {

Map<Character, Intege
distance.put(start, 0O
Comparator<Character>
PriorityQueue<Charact
toExplore.add(start);

ueue once they are actually

r> distance = new HashMap<>();

)i

comp = (a, b) -> distance.get(a) - distance.get(b);
er> toExplore = new PriorityQueue<>(comp);

Don't need to add anything for all nodes yet.

4/10/24

CompSci 201, Spring 2024, L24: Shortest Paths

16

Practical Dijkstra search loop

Keep searching while
there are unexplored

Choose to explore from the
next closest (to start)

nodes. unexplored node to start at

each iteration.

while (toExplore.size() > 0) {
char current = toExplore.remove():
int currDist = distance.get(current);
for (char neighbor : alList.get(current)) {--

}

return distance;

Search all neighbors of current. If you
find a shorter path to neighbor through
current, update to reflect that.

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 17

Details: Checking each neighbor

All neighbors of Distance to neighbor through current = distance to
current node current + weight on edge from current to neighbor

for (char neighbor : alList.get(current)) {
int newDist = currDist + getWeight(current, neighbor);
if (!distance.containsKey(neighbor)) { If neighbor newly
distance.put(neighbor, newDist); discovered:
toExplore.add(neighbor); . Record new distance

» Add to priority queue

]_

else if (newDist < distance.get(neighbor)) {
// implement decreasePriority by removal and re-insertion
toExplore.remove(neighbor);
distance.put(neighbor, newDist);
toExplore.add(neighbor);

If neighbor already
discovered, update:

« Remove from PQ

* Record new distance
« Add back to PQ

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths

Implementing decreasePriority

« Most standard library binary heaps (including
java.util) don't support an efficient
update/decrease priority operation.

else if (newDist < distance.get(neighbor)) {
// implement decreasePriority by removal and re-insertion
toExplore.remove(neighbor);
distance.put(neighbor, newDist);
toExplore.add(neighbor);

].

 Our code works, but is O(N) time

« Java's PQ takes O(N) to remove given node (O(1) for
smallest)

» Other PQ implementations support O(log N)-time
decreasePriority, but they are not in Java library

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 19

Initialize search at A

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (PriorityQueue) previous (mMap) distance (Map)

A A=0

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths

20

Remove A from PriorityQueue

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (PriorityQueue) previous (mMap) distance (Map)

A=0

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 21

Find B from A

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (PriorityQueue) previous (mMap) distance (Map)

B B<-A A=0
B=2(A+2)

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 22

Find D from A

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (PriorityQueue) previous (mMap) distance (Map)

D comes first B<-A A=0
because lower D<-A B=2
distance/prio. D=1

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 23

Remove D from PriorityQueue

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (PriorityQueue) previous (mMap) distance (Map)

B B<-A

)

N\

>
O >
n omonu
= N O

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 24

Find E from D

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (PriorityQueue) previous (mMap) distance (Map)
B and E are tied B < A A=0
in distance, D < A B=?
suppose B E<D D=1
comes first E=2(D+1)

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 25

Remove B from PriorityQueue

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (PriorityQueue) previous (mMap) distance (Map)

E B<-A
D<-A
E<-D

m o W >

N =, N O

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 26

Find longer path to E from B

E through B is dist. 2+2
=4 but current dist. is 2

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (PriorityQueue) previous (mMap) distance (Map)
E B<-A A=0
F D<-A B=2
E<-D D=1
F<-B E=2
F=5
4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths

27

Find F from B

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (PriorityQueue) previous (mMap) distance (Map)
E has lower B<-A A=0
distance D <-A B=2
E<-D D=1
F<-B E=2
F=5(B+3)

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 28

Remove E from PriorityQueue

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (PriorityQueue) previous (mMap) distance (Map)
F B<-A A=0
D<-A B=2
E<-D D=1
F<-B E=2
F=5

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 29

Find shorter path to F from

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (PriorityQueue) previous (mMap) distance (Map)
Decrease
F B <- :)
<A dist./prio. to 5
D<-A
from 4
E<-D

F <- E (instead of B)

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 30

Remove F from PriorityQueue

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (PriorityQueue) previous (mMap) distance (Map)
B<-A A=0
D<-A B=2
E<-D D=1
F<-E E=2
F=4

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 31

Find C from F

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, D, F]
F=[B, C, E]

toExplore (PriorityQueue) previous (mMap) distance (Map)
F B<-A A=0
C D<-A B=2
E<-D D=1
F<-E E=2
C<-F F=4
4/10/24 CompSci 201, Spring 2024, 1.24: Shortest Paths C =5 (F + 1) 32

Remove old F from PriorityQueue

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (PriorityQueue) previous (Map) distance (map)
C B<-A A=0
D<-A B=2
E<-D D=1
F<-E E=2
C<-F F=4
4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths C=5

33

Remove C from PriorityQueue

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]
toExplore (PriorityQueue) previous (mMap) distance (Map)
B<-A A=0
D<-A B=2
E<-D D=1
F<-E E=2
C<-F F=4
4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths C=5 34

s Dijkstra’s algorithm guaranteed
to be correct? (Informal)

 Claim. Distance is correct shortest path distance for
all nodes explored so far, and shortest path distance
through explored nodes for all others.

« Formal proof is by induction, see CompSci 230.

« Assume the property is true up to some point in the
algorithm, then...

» Consider the next node we explore:

|s Dijkstra’s algorithm guaranteed
to be correct? (Informal)

Suppose we
explore from C
this iteration

The shortest path
distance so far goes
through explored nodes

Can't be another shorter
path through an unexplored
node, there would be a
node that should have been
removed first instead of C.

[J R

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 37

Runtime Complexity of Dijkstra’s
Algorithm (with N nodes, M edges)
assuming O(log N) decreasePriority

O(log(N)), heap

33 while (toExplore.size() > 0) {

34 char current = toExplore.remove();

35 > for (char neighbor : alList.get(current)) {-

42 }

43 return distance; O(1) in HashMap,
44 lterations over O(log(N)) in TreeMap

neighbors

Like BFS, consider each node once and each edge
twice, log(N) operations for each: O((N+M)log(N))

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 38

