
4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 1

L2: Shortest Paths in
Weighted Graphs

Alex Steiger

CompSci 201: Spring 2024

4/10/2024

Person in CS: Edsger Dijkstra

• Dutch computer scientist, 1930 – 2002.

• PhD in 1952, Turing award in 1972.

• Originally planned to study law, switched to
physics, then to computer science.

• “After having programmed for some three
years…I had to make up my mind, either
to…become a…theoretical physicist, or to
…become..... what? A programmer? But was
that a respectable profession?…Full of
misgivings I knocked on Van Wijngaarden's
office door, asking him whether I could "speak
to him for a moment"; when I left his office a
number of hours later, I was another person.
For after having listened to my problems
patiently…he went on to explain quietly that
automatic computers were here to stay, that
we were just at the beginning and could not I
be one of the persons called to make
programming a respectable discipline in the
years to come?”

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 2

Logistics, coming up

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 3

• Today, Wednesday, April 10
• APT Quiz 2 due

• Covers linked list and trees

• No regular APTs due this week, just the quiz

• Next Wednesday, 4/17
• Midterm exam 3

• Practice exams coming soon to Canvas

• APT 9 extended to Thursday 4/20

Midterm Exam 3

• Logistics:
• 60 minutes, in-person, multiple-choice + fill-in-blank

• Can bring 1 reference/notes page

• Topics could include:
• Trees, binary search trees, binary heaps, recursion

• AVL trees: High-level concept of balance factor/rotations,
yes, details of performing rotations, no.

• Greedy, Huffman

• Graphs, DFS, BFS, Dijkstra’s

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 4

Today’s agenda

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 5

• Finish WordLadder Problem

• Shortest paths in weighted graphs:
• Dijkstra’s algorithm

Example WordLadder Problem

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 6

leetcode.com/problems/word-ladder/description/

Live coding

https://leetcode.com/problems/word-ladder/description/

L24-WOTO1-WordLadder-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetID *

1

solutions

Suppose you have:

beginWord = "cat"

2

4

endWord = "dog"
wordList = ["hot","dot","dog","lot","log","cog", "cot"]

The length of the shortest word ladder is... *

Consider this makeGraph method, part of a correct solution to the wordLadder problem.
Assume the oneOff method correctly returns true if two strings differ by a single character and
false otherwise, and runs in O(1) time.

If N is the length of the wordList, what is the asymptotic runtime complexity of the makeGraph
method as a function of N? *

3

O(1)

O(N)

O(N log(N))

O(N^2)

O(N^2 log(N))

Consider this code, part of a correct solution to the wordLadder problem. It works with an
adjacency list representation aList such as would be generated by the makeGraph method.

If there are N words in total in the wordList, and each word can be transformed into at most a
constant number O(1) other words by changing a single character, then what is the runtime
complexity of this code? *

4

O(1)

O(N)

O(N log(N))

O(N^2)

O(N^2 log(N))

Building the graph takes most of the time

Running the search on the graph takes most of the time

For the approach to the wordLadder problem outlined above, what dominates the runtime
complexity of the algorithm? Assume that each word is at most a constant length and that
each word can be transformed into at most a constant number of other words. *

5

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.
Microsoft Forms | AI-Powered surveys, quizzes and polls Create my own form
Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

Weighted Graphs and
Dijkstra’s Algorithm

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 8

Weighted Graphs

Each edge has an associated weight representing
cost, distance, etc.

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 9

Zybook chapter 24

In mapping
applications, maybe
one road is twice as
long as another.

Project 6: Route

Project 6 Google Maps Directions

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 10

Durham, NC → Seattle WA,
~2800 miles

Project 6: Route Demo

Partner project, can work (and submit) with one other
person. Make sure to read the directions on using Git
with a partner, and to submit together on
gradescope.

GraphProcessor: Implement algorithms with real-
world graph data.

No analysis for this project.

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 11

Shortest weighted paths?

• BFS gives shortest paths in unweighted graphs.

• Modify BFS to account for weights; called Dijkstra’s
algorithm.

• BFS = queue, Dijkstra’s = …
• Priority queue!

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 12

Exploring a node with Dijkstra’s
Algorithm, Pseudocode

Just like BFS (explore closer nodes first) except…
now we need to account for weights.

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 13

While unexplored nodes remain

• Explore current = the closest
unexplored node

• For each neighbor:

• Update shortest path to
neighbor if shorter to go
through current

wikipedia.org/wiki/Dijkstra%27s_algorithm

“Textbook” Dijkstra Initialization

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 14

• Initialize distances to:
• 0 for the start node,

• Infinity for everything else

• Add all nodes to a priority queue, using their
distance as the priority

“Textbook” Dijkstra Exploration

• While there are unexplored nodes:
• Get the closest unexplored node to the start

• Look at all neighbors:

• If the path through current is shorter:

• Update distance, update priority in priority
queue

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 15

Practical Dijkstra Initialization

Like the previous implementation, but only add
vertices to the queue once they are actually
reached/visited.

Don’t need to add anything for all nodes yet.

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 16

Practical Dijkstra search loop

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 17

Keep searching while
there are unexplored
nodes.

Choose to explore from the
next closest (to start)

unexplored node to start at
each iteration.

Search all neighbors of current. If you
find a shorter path to neighbor through
current, update to reflect that.

Details: Checking each neighbor

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 18

All neighbors of
current node

Distance to neighbor through current = distance to
current + weight on edge from current to neighbor

If neighbor newly
discovered:
• Record new distance
• Add to priority queue

If neighbor already
discovered, update:
• Remove from PQ
• Record new distance
• Add back to PQ

Implementing decreasePriority

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 19

• Most standard library binary heaps (including
java.util) don’t support an efficient
update/decrease priority operation.

• Our code works, but is O(N) time
• Java’s PQ takes O(N) to remove given node (O(1) for

smallest)
• Other PQ implementations support O(log N)-time

decreasePriority, but they are not in Java library

Initialize search at A

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 20

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

A

previous (map) distance (map)

A = 0

Remove A from PriorityQueue

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 21

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue) previous (map) distance (map)

A = 0

Find B from A

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 22

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

B

previous (map)

B <- A

distance (map)

A = 0
B = 2 (A + 2)

Find D from A

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 23

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

D
B

previous (map)

B <- A
D <- A

distance (map)

A = 0
B = 2
D = 1 (A + 1)

D comes first
because lower
distance/prio.

Remove D from PriorityQueue

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 24

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

B

previous (map)

B <- A
D <- A

distance (map)

A = 0
B = 2
D = 1

Find E from D

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 25

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

B
E

previous (map)

B <- A
D <- A
E <- D

distance (map)

A = 0
B = 2
D = 1
E = 2 (D + 1)

B and E are tied
in distance,
suppose B
comes first

Remove B from PriorityQueue

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 26

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

E

previous (map)

B <- A
D <- A
E <- D

distance (map)

A = 0
B = 2
D = 1
E = 2

Find longer path to E from B

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 27

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

E
F

previous (map)

B <- A
D <- A
E <- D
F <- B

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 5

E through B is dist. 2+2
= 4, but current dist. is 2

Find F from B

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 28

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

E
F

previous (map)

B <- A
D <- A
E <- D
F <- B

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 5 (B + 3)

E has lower
distance

Remove E from PriorityQueue

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 29

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

F

previous (map)

B <- A
D <- A
E <- D
F <- B

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 5

Find shorter path to F from E

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 30

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

F

previous (map)

B <- A
D <- A
E <- D
F <- E (instead of B)

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 5 -> 4 (E + 2)

Decrease
dist./prio. to 5

from 4

Remove F from PriorityQueue

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 31

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue) previous (map)

B <- A
D <- A
E <- D
F <- E

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 4

Find C from F

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 32

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

F
C

previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 4
C = 5 (F + 1)

Remove old F from PriorityQueue

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 33

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue)

C

previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 4
C = 5

Remove C from PriorityQueue

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 34

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1

1

3

2

12

toExplore (PriorityQueue) previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 4
C = 5

Is Dijkstra’s algorithm guaranteed
to be correct? (Informal)

• Claim. Distance is correct shortest path distance for
all nodes explored so far, and shortest path distance
through explored nodes for all others.

• Formal proof is by induction, see CompSci 230.
• Assume the property is true up to some point in the

algorithm, then…

• Consider the next node we explore:

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 36

Is Dijkstra’s algorithm guaranteed
to be correct? (Informal)

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 37

C

start

A

B

Explored nodes

d[A]

d[B]

Suppose we
explore from C

this iteration

The shortest path
distance so far goes

through explored nodes

W(A,C)

Can’t be another shorter
path through an unexplored

node, there would be a
node that should have been
removed first instead of C.

Runtime Complexity of Dijkstra’s
Algorithm (with N nodes, M edges)
assuming O(log N) decreasePriority

Like BFS, consider each node once and each edge
twice, log(N) operations for each: O((N+M)log(N))

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 38

O(log(N)), heap

O(1) in HashMap,
O(log(N)) in TreeMap

N iterations?

Iterations over
neighbors

