25 MInimum
Spanning Trees (MST)
and Disjoint Sets

Alex Steiger
CompsSci 207: Spring 2024
4/15/2024



Logistics, coming up

« This Wednesday, 4/17/

« Midterm exam 3
« APT 9 (last APTs) - extended to Thursday 4/18

 This Friday, 4/19

« Semester / Final review in discussion

* Next Monday, 4/22
 Project P6: Route (last project) due

» Tuesday after next, 4/30
e Final exam, 9 am



Exploring a node with Dijkstra’s
Algorithm, Pseudocode

e

While unexplored nodes remain .7
« Explore current = the closest 7
unexplored node SESAN) ¢
 For each neighbor: @,% A AT
» Update shortest path to TSRS
neighbor if shorter to go L QN
through current

wikipedia.org/wiki/Dijkstra%27s_algorithm

Just like BFS (explore closer nodes first) except..
now we need to account for weights.



Practical Dijkstra Initialization

Add vertices to the queue once they are actually
reached/visited.

28 v public Map<Character, Integer> stdDijkstra(char start, Map<Character, List<Character>> alList) {
29 Map<Character, Integer> distance = new HashMap<>();

30 distance.put(start, 0);

31 Comparator<Character> comp = (a, b) -> distance.get(a) - distance.get(b);

32 PriorityQueue<Character> toExplore = new PriorityQueue<>(comp);

33 toExplore.add(start);

Don't need to add anything for all nodes yet.

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 4



Practical Dijkstra search loop

Keep searching while
there are unexplored

Choose to explore from the
next closest (to start)

nodes. unexplored node to start at

each iteration.

while (toExplore.size() > 0) {
char current = toExplore.remove();
int currDist = distance.get(current);
for (char neighbor : alist.get(current)) {--

]_

return distance;

Search all neighbors of current. If you
find a shorter path to neighbor through
current, update to reflect that.

4/10/24 CompsSci 201, Spring 2024, L24: Shortest Paths 5



Details: Checking each neighbor

All neighbors of Distance to neighbor through current = distance to
current node current + weight on edge from current to neighbor

for (char neighbor : alList.get(current)) 1
int newDist = currDist + getWeight(current, neighbor);
if (!distance.containsKey(neighbor)) { If neighbor newly
distance.put(neighbor, newDist); discovered:

toExplore.add(neighbor); « Record new distance
« Add to priority queue

]_

else if (newDist < distance.get(neighbor)) {
// implement decreasePriority by removal and re-insertion
toExplore.remove(neighbor);
distance.put(neighbor, newDist);
toExplore.add(neighbor);

If neighbor already
discovered, update:

« Remove from PQ

» Record new distance
« Add back to PQ

4/10/24 CompsSci 201, Spring 2024, L24: Shortest Paths



Implementing decreasePriority

« Most standard library binary heaps (including
java.util) don't support an efficient
update/decrease priority operation.

else if (newDist < distance.get(neighbor)) {
// implement decreasePriority by removal and re-insertion
toExplore.remove(neighbor);
distance.put(neighbor, newDist);
toExplore.add(neighbor);

}.

 Our code works, but is O(N) time

« Java's PQ takes O(N) to remove given node (O(log N)
for smallest)

« Other PQ implementations support O(log N)-time
decreasePriority, but they are not in Java library

4/10/24 CompSci 201, Spring 2024, L24: Shortest Paths 7



|s Dijkstra’s algorithm guaranteed

« Claim.

to be correct? (Inforr

Distance is correct shortest pat

nal)

N distance for

all nodes explored so far, and shortest
through explored nodes for all others.

nath distance

« Formal proof is by induction, see CompSci 230.

« Assume the property is true up to some point in the
algorithm, then...

« Consider the next node we explore:



s Dijkstra’s algorithm guaranteed
to be correct? (Informal)

Suppose we
explore from C
this iteration

The shortest path
distance so far goes
through explored nodes

Can't be another shorter path
through an unexplored node!
There would be a node that would
be explored/removed from the PQ
before C.

4/10/24 CompsSci 201, Spring 2024, L24: Shortest Paths 10




Runtime Complexity of Dijkstra’s
Algorithm (with N nodes, M edges)
assuming O(log N) decreasePriority

O(log(N)), heap

33 while (toExplore.size() > @) {

34 char current = toExplore.remove();

35 > for (char neighbor : alList.get(current)) {-

42 }

43 return distance; 0(1) in HashMap,
44 lterations over O(log(N)) in TreeMap

neighbors

Like BFS, consider each node once and each edge
twice, takes O(log N) time for each: O((N+M)log(N))

4/10/24 CompsSci 201, Spring 2024, L24: Shortest Paths 11



L25-WOTO1-Dijkstra-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetlD * [T}

solutions

2

At each iteration, Dijkstra's algorithm will explore the next unexplored node that... * [T}



O was discovered most recently
O was discovered earliest
@ is closest to the starting node

O is closest to the ending node

3
Suppose every edge in the graph has equal weight. Then Dijkstra's algorithm would... * [T}
O Explore nodes in the order of a depth-first search (DFS)
@ Explore nodes in the order of a breadth-first search (BFS)

O Explore nodes in an order different than DFS or BFS

4

The best explanation of the if statement on line 39 is... * 1}



37
38
39
40
41
42
43
44
45
46
47
48
49

O O O @ O

for (char neighbor : alist.get(current)) {
int newDist = currDist + getWeight(current, neighbor);
if (!distance.containsKey(neighbor)) {
distance.put(neighbor, newDist);
toExplore.add(neighbor);

}.

else if (newDist < distance.get(neighbor)) {
// implement decreasePriority by removal, update prio, then reinsert
toExplore.remove (neighbor);
distance.put(neighbor, newDist);
toExplore.add(neighbor);
If neighbor is newly discovered or is closer to start than current
If neighbor is newly discovered or the path through current to neighbor is shorter
If neighbor is newly discovered
If neighbor is not in the graph or is closer to start than current

If neighbor is not in the graph or the path through current to neighbor is shorter

If the path through current to neighbor is shorter

5

The best explanation of the if statement on line 43 is... * 1]



37
38
39
40
41
42
43
44
45
46
47
48
49

@ O O O O

for (char neighbor : alList.get(current)) {

int newDist = currDist + getWeight(current, neighbor);

if (!distance.containsKey(neighbor)) {
distance.put(neighbor, newDist);
toExplore.add(neighbor);

}.

else if (newDist < distance.get(neighbor)) {
// implement decreasePriority by removal, update prio, then reinsert
toExplore.remove (neighbor);
distance.put(neighbor, newDist);
toExplore.add(neighbor);

If neighbor is newly discovered or is closer to start than current

If neighbor is newly discovered or the path through current to neighbor is shorter

If neighbor is newly discovered

If neighbor is not in the graph or is closer to start than current

If neighbor is not in the graph or the path through current to neighbor is shorter

If the path through current to neighbor is shorter



6

Consider the weighted undirected graph
diagrammed with edges labeled by their weight.

Starting from A, in what order will Dijkstra's
algorithm explore (remove from the priority queue)
the nodes in the graph? * [T}

() ABD,CEF

() ABDECF

7

Again starting from A in the same graph, which path
from A to E will Dijkstra's algorithm record as the
shortest path? Hint: See the if statements above in
problems 4-5. * [1}




O Might be either, depends on tie breaking in the priority queue

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use


https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

Minimum Spanning Tree
(MST) and Greedy Graph
Algorithms



Minimum Spanning Tree (MST)
Problem

« Given N nodes and M edges, each with a weight/cost...

 Find a set of edges that connect all the nodes with
minimum total cost (will be a tree)

Weighted undirected
graph with:

» Edges labeled with
weights/costs

* Minimum spanning
tree highlighted

4/15/24 CompSci 201, Spring 2024, L.25: MSTs

13



Motivating/Applying Minimum
Spanning Tree

* Create a connected cable/data network with 'QJ
the least cable/cost/energy possible. ;I

« City planning: Connect several metro stops
with least tunneling

* Image Segmentation

» Clustering

'
https://slideplayer.com/slide/11413693/
4/15/24 CompSci 201, Spring 2024, 1L.25: MSTs 14

— ]

€ g




-xample MST Problem

leetcode.com/problems/min-cost-to-connect-all-

points

You are given an array pointsrepresenting integer
coordinates of some pointson a 2D-plane,
where points[i] = [x;, yil.

The cost of connecting two points [x, y;] and [x;, y;] is
the manhattan distance between them: |x - x| + |y; -
y;|, where |val| denotes the absolute value of val.

Return the minimum cost to make all points

connected. All points are connected if there is exactly
one simple path between any two points.

4/15/24 CompSci 201, Spring 2024, L.25: MSTs

- N WA OO N ®®© 5

o
%

'cost=9

8 cost=3 @

cost=4

cost=4

1

&
2 3 45 6 7 8

15

>


https://leetcode.com/problems/min-cost-to-connect-all-points
https://leetcode.com/problems/min-cost-to-connect-all-points

Intuitive Inductive Reasoning

« Suppose we have the MST on N-1 vertices.

 \We consider the next vertex to
get the MST on N vertices.

« Must use the cost 2 or the
cost 5 edge regardless of
the rest of the MST

 Might as well use the /
cheaper cost 2 edge




Greedy Optimization: Prim’s
Algorithm

e Initialize?
« Choose an arbitrary vertex

* Partial solution?
« MST connecting subset of the vertices.

» Greedy step?

» Choosethe cheapest / least weight edge that
connects a new vertex to the partial solution.



Visualizing Prim’'s Algorithm

In the visualization: i o °

» Edges between all pairs of ’
vertices %o o0

« Weights are implicit by distances L

- Algorithm greedily grows by o o
choosing closest unconnected o 0
vertex © o

O

By Shiyu Ji - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=54420894



More Intuitive Inductive Reasoning

e SUppose we have A
chosen some spanning
trees so far.

« Must connect all of
them, might as well
choose the cheapest
edge connecting two
trees.

Bold green edges = chosen G

Public Domain,
https://commons.wikimedia.org/w/index.php?curid=644
030

4/15/24 CompSci 201, Spring 2024, 1L.25: MSTs 19



Greedy Optimization Again:
Kruskal's Algorithm

* Initialize?
« All nodes in disjoint sets

* Partial solution?
« Forest of spanning trees in disjoint sets

» Greedy step?

» Choosethe cheapest / least weight edge that
connects two disjoint sets / trees, connect them.



Visualizing Kruskal's Algorithm

In the visualization:

» Edges between all pairs of o
vertices °

« Weights are implicit by A R
distances .

« Algorithm greedily grows by o0 0
cheapest edge that connects 0 L% o
disjoint sets/trees. O

By Shiyu Ji - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=54420894



L25-WOTO2-MST-5p24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetlD * [T}

solutions



2

For the weighted undirected graph pictured below,
what is the total cost of the minimum spanning tree?

* 0

3

Suppose we are running Prim's algorithm, and we
have so far selected the edge between nodes 3 and
4 shown in bolded red. What edge will we greedily
select next? * [1)

O Edge between nodes 0 and 1



O Edge between nodes 0 and 2
@ Edge between nodes 0 and 4

O Edge between nodes 2 and 3

4

Suppose we are running Kruskal's algorithm. So far
we have selected the edges shown in bolded green:
(A, D) and (C, E).

How many disjoint sets/trees are there remaining at
this point? * 1)




5

Suppose we are running Kruskal's algorithm. So far
we have selected the edges shown in bolded green:
(A, D), (A, B), (D, F), and (C, E).

Which edge will the algorithm select next? * [1}

True or false: In a given iteration, Kruskal's algorithm will always select/add to the MST the next
lowest weight edge. * [}

O True



@ False

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use


https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

Kruskal's Algorithm in Pseudocode

Input: N node, M edges, M edge weights
* Initialize MST as empty set
* Let S be a collection of N disjoint sets, one per node

« While S has more than 1 set:
« Let (u, v) be the minimum cost remaining edge

* Findwhich sets uand v arein. If different sets:
* Union the sets together
« Add (u, v) to MST

e Return MST



Kruskal's Algorithm Runtime?

Input: N node, M edges, M edge weights guepsmre=y=
* Initialize MST as empty set (worst case) all M
* Let S be a collection of N disjoint se

c per node
« While S has more than 1 set:
« Let (u, v) be the minimum cost remaining edge
* Find which sets uand v arein. If differenisets:
* Unionthe sets together
« Add (U, V) to MST Remove from

e Return MST

binary heap,

Overall: O(M(log(M)+C)) where O(log(M))

Cis time for Union/Find

4/15/24 CompSci 201, Spring 2024, L.25: MSTs 24



