L2 7: Disjoint Sets +
More MST

Alex Steiger
CompSci 207: Spring 2024
4/22/2024



Logistics, coming up

« Today, Monday, 4/22
* Project P6: Route (last project) due

 Extra credit! 3 surveys for 0.5% final grade each:
« Official course evals (>70% completion)
« End-of-semester survey (individual completion)
« AiiCE survey (>70% completion)
* Due 4/27 @ midnight

« Next week on Tuesday, 4/30
* Final exam, 9 am-12pm
« Required, comprehensive



Final Exam

Policy Reminder

* Final exam composed of 3 parts:
* F1,F2, F3 corresponding to 3 midterms M1, M2, M3.
» Final Exam Grade: F1 + F2 + F3
« Midterm Exam i (=1,2,3) Grade: Max(Fi,Mi)

 The four exam grades compose 11% of overall course

grade each

 Due to replacement policy, the final may compose up to 44% of
your course overall (replace all 3 midterm grades)

« May bring three 8.5'x11" double-sided reference sheets

« Any questions on MSTs, disjoint sets, later material are
extra credit on final exam grade (expect a few!)



Final Grade Estimates

By this weekend, all grades should be on Canvas
 (Aiming to get most up on Thursday, ideally all)

« Will provide a final grade estimate with a 0% on final

« Will announce ASAP when these are ready



Today's Agenda

. Review Minimum Spanning Tree (MST) problem
and Kruskal's Algorithm

Investigate efficient disjoint sets / union find data
structure

. (Time-permitting) Euclidean Minimum Spanning
Trees



Minimum Spanning Tree
(MST) and Greedy Graph
Algorithms



Minimum Spanning Tree (MST)
Problem

« Given N nodes and M edges, each with a weight/cost...

 Find a set of edges that connect all the nodes with
minimum total cost (will be a tree)

Weighted undirected
graph with:

» Edges labeled with
weights/costs

* Minimum spanning
tree highlighted

4/15/24 CompSci 201, Spring 2024, L25: MSTs



Greedy Optimization Again:
Kruskal's Algorithm

e |nitialize?
« All nodes in disjoint sets

* Partial solution?
» Forest of spanning trees in disjoint sets

* Greedy step?

» Choose the cheapest / least weight edge that
connects two disjoint sets / trees, connect them.



Visualizing Kruskal's Algorithm

In the visualization:

» Edges between all pairs of _ o
vertices 0

« Weights are implicit by . 9 5
distances .

 Algorithm greedily grows by o0 0
cheapest edge that connects 0 _ 0
disjoint sets/trees. C

By Shiyu Ji - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=54420894



Kruskal's Algorithm in Pseudocode

Input: N node, M edges, M edge weights
* Initialize MST as empty set
* Let S be a collection of N disjoint sets, one per node
« While S has more than 1 set:
* Let (u, v) be the minimum cost remaining edge
* Find which sets u and v are in. If different sets:

 Union the sets together
« Add (u, v) to MST

e Return MST



Kruskal's Algorithm Runtime?

Input: N node, M edges, M edge weights gumpssmrersy
* Initialize MST as empty set worst case) all M
* Let S be a collection of N disjoint se

» While S has more than 1 set:
* Let (u, v) be the minimum cost remaining edge
 Find which sets uand v are in. If differen

 Union the sets together
» Add (U; V) to MST Remove from

e Return MST

binary heap,

Overall: O(M(log(M)+C)) where O(log(M))

C is time for Union/Find

4/15/24 CompSci 201, Spring 2024, L25: MSTs 17



Disjoint Sets and
Jnion-Find

DIYDisjointSets implementation viewable here:
coursework.cs.duke.edu/cs-201-spring-24/diydisjointsets

4/15/24 CompSci 201, Spring 2024, L25: MSTs 12


https://coursework.cs.duke.edu/cs-201-spring-24/diydisjointsets

Union-Find Data Structure

» AKA Disjoint-Set Data Structure

« Start with N distinct (disjoint) sets
 consider them labeled by integers: 0, 1, ...

 Union two sets: create set containing both
* |label with one of the numbers

* Find the set containing a number
« |nitially self, but changes after unions



Disjoint-Set Forest Implementation

« Each set will be represented by a parent “tree”: Instead
of child pointers, nodes have a parent “pointer”.

 Everything starts as its own tree: a single node

e e

itemID O

4/15/24 CompsSci 201, Spring 2024, L25: MSTs 14



Disjoint-Set Forest Union

 Union(7,8)
« Make root parent[8] point to root parent|7]

e

itemID O 8

4/15/24 CompsSci 201, Spring 2024, L25: MSTs 15



Disjoint-Set Forest Union

 Union(3,4)
« Make root parent[4] point to root parent|3]

Bilanild

itemID O 8

4/15/24 CompsSci 201, Spring 2024, L25: MSTs 16



Disjoint-Set Forest Union

« Union(3,8)
 parent[8] is not the root anymore—Need to find its root first
« Use Find(8) operation

Bilanild

itemID O 8

4/15/24 CompsSci 201, Spring 2024, L25: MSTs 17



Disjoint-Set Forest Find

« Find(8):
 Find root of tree containing 8.

« Follow parent pointers starting at parent[8] Find(8)
* In this example, parent|7] /

itemID O 8

4/15/24 CompsSci 201, Spring 2024, L25: MSTs 18



Disjoint-Set Forest Find

 Back to Union(3,8)
« Set root of parent|[8], which is Find(8) = parent[7], to root parent[3]

Find(8)

o~
itemID O 5 6 / 8

4/15/24 CompsSci 201, Spring 2024, L25: MSTs 19



Disjoint-Set Forest Array
Representation

* The "nodes” and "pointers” are just conceptual —
can represent with a simple array, like binary heap.

 Parent array just stores what the itemlID node
points to.

0600 oo o

parent ﬂ-----ﬂ--

itemID O

4/15/24 CompsSci 201, Spring 2024, L25: MSTs 20



Disjoint-Set Forest Find

root is just when

18 public int find(int id) { parent[i] =
19 while (id != parent[id]) {
20 1d = parent[id]; Else go to next
21 } ‘node up’
22 return id;

23 }
000 eoa\e

parent ﬂ-----ﬂ--

itemID O

4/15/24 CompsSci 201, Spring 2024, L25: MSTs 21



Disjoint-Set Forest Union Revisited

25 public void union(int setl, int set2) {

26 int rootl = find(setl);

27 int root2 = find(set2);
parent[root2] = rootl;

Make one “point to” other & ‘\

000
e N O I O O O

roots from initial set

and initial set2 “nodes”

itemID O

4/15/24 CompsSci 201, Spring 2024, L25: MSTs 22



Worst-Case Runtime Complexity?

What if we...

25 public void union(int setl, int set2) { union(7,8)

26 int rootl = find(setl); )
27 int root2 = find(set2): union(6,7)
28 parent[root2] = rootl; union(5,6)

Now find(8) would have union(0,1)

linear runtime complexity!!

S N O O O O O o

itemID O

4/15/24 CompsSci 201, Spring 2024, L25: MSTs 23



Optimization T: Union by Size

Be careful in how you union.
Always make the “root” for
the set with fewer elements
point to the “root” for the set
with more elements.

Sufficient for worst case
logarithmic efficiency.

4/15/24 CompSci 201, Spring 2024, L25: MSTs 24



Optimization T: Union by Size

Claim. Each element to root path
has length at most O(log(N))
with union by size optimization.

Proof.

« (Consider an element a, initially
a set of size 1.

« Each time the path length

increases, the size of the set

must at least double.

« Can happen at most O(log(N))
times with N initial sets.

4/15/24 CompSci 201, Spring 2024, L25: MSTs 25



Optimization T: Union by Size

37 public void union(int setl, int set2) { |f a|readym same
38 int rootl = find(setl); set, nothing to do.
39 int rootZ2 = find(set2);

40 1f (rootl == root2) { return; }

41 1f (setSizes[rootl] < setSizes[rootZ2]) {

42 parent[rootl] = rootZ;

43 setSizes[root2] += setSizes[rootl];

44 h Make the smaller
45 else { set “point to” the
46 parent[root2] = rootl; bigger set.
47 setSizes[rootl] += setSizes[rootZ];

48 }

49 size--;

50 }

4/15/24 CompSci 201, Spring 2024, L25: MSTs 26



Lazy Path Compression

* Lazy path compression:
When ever you traverse a
path in find, connect all

find(8)

the pointers to the top.

« Sufficient for amortized
logarithmic runtime
complexity for union/find
operations.

4/15/24 CompSci 201, Spring 2024, L25: MSTs 27



Disjoint Set Forest Path
Compression

8 public int find(int id) {

9
10
11
12
13
14
15
16
17
18
19
20

21}

4/15/24

int idCopy = 1id;
while (id !'= parent[id]) {
id = parent[id]; Get the root as before

¥
int root = 1id;
id = idCopy; Traverse path again,
while(id != parent[id]) { assigning everything to
parent[idCopy] = root; the root
1d = parent[id];
1dCopy = 1d;
3

return 1id;

CompsSci 201, Spring 2024, L25: MSTs 28



Optimized Runtime Complexity

 Optimizations considered separately:
 Union by size: Worst-case logarithmic
« Path compression: Amortized logarithmic

» Considered together...?

« Worst-case logarithmic, and amortized inverse
Ackermann function a(n)

16
265536

2
- a(n) <5 forn <22 =22

« Number of atoms in observable universe only ~108°
 Practically constant for any n you can write down



Remember Kruskal's Algorithm
Runtime?

Input: N node, M edges, M edge weights

e Let MST to an empty set LOBfpIirg GYer (ol
case) all M edges

* Let S be a collection of N disjoint sets @& Her Node
« While S has more than 1 set:
* Let (u, v) be the minimum cost remaining edge
 Find which sets u and v are in. If different sqs:

* Union the sets

e Add (U, V) to MST Remove from binary

heap, O(log(M
e Return MST e

O(M(log(M)+C) = O(M log M)

because C < log(M) for our
optimized union find

4/15/24 CompSci 201, Spring 2024, L25: MSTs 30



L27-WOTO1-DisjointSets-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.
* Required
NetlD * [T}

solutions

2

Suppose we initialize a disjoint sets data structure with 10 sets (numbered 0 through 9), then
do the following operations:



union(0, 1)
find(1)

union(2, 3)
union(0, 4)
union(4, 5)
union(1, 5)

How many disjoint sets remain / what is the size of the data structure at this point? * [T}

3

Consider the following array representation of a disjoint sets data structure. What would be
returned by find(5)? * [

itemID O

(O 1



@ ¢
(s

O None of the above

4

Consider the same array representation of a disjoint sets data structure as the previous
problem. How many sets have a single element? * [1}

itemID O



5

Consider the same array representation of a disjoint sets data structure. Suppose we
union(3,5). Which of the following updates would be performed under union by size

optimization? * [T}

itemlD O

@ Change the itemID 2 parent value to 4
O Change the itemID 3 parent value to 4
O Change the itemID 3 parent value to 5
O Change the itemlID 5 parent value to 2

O Change the itemID 5 parent value to 3

6

Select all that are true of the amortized runtime complexity of union/find operations on a
disjoint sets forest data structure with union by size and path compression optimizations. *

[



Constant for n up to trillions

Constant for n up to the number of grains of sand on earth

Constant for n up to the number of seconds that have elapsed since the big bang
Constant for n up to the number of stars in the known/observed universe

D Constant in the limit as n --> infinity

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use


https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

-xtensions of MST

« We described 0(M log N)-time for “offline” case
« Entire input is given upfront (like all algs. in 207)
» 0(Ma(N)) is possible, avoids sorting [Chazelle '99]

« Dynamic MST: How quickly can an MST be updated
as the result of:

* Insertion of a new edge?
 Deletion of an edge?

* Need to recompute the entire MST from scratch?
« No! O(M+N) time suffices via BFS/DFS
« With advanced data structures, O(log N) possible



Euclidean MST

« Given N points in the plane:
« Find spanning tree T of the points
« Any segment between two points can be used
 # of edges is O(N?)
« Edge weight = segment length

4/15/24 CompSci 201, Spring 2024, L25: MSTs



Euclidean MST

« Given N points in the plane:
« Find spanning tree T of the points
« Any segment between two points can be used
 # of edges is O(N?)
« Edge weight = segment length

4/15/24 CompSci 201, Spring 2024, L25: MSTs

34



Euclidean MST

« Given N points in the plane:
« Find spanning tree T of the points
« Any segment between two points can be used
 # of edges is O(N?)
« Edge weight = segment length

*« O(MlogN) = O(N4logN) time

* Does geometry help?
« Do we need to consider
every possible edge?



Euclidean MST

« Given N points in the plane:
« Find spanning tree T of the points
« Any segment between two points can be used
 # of edges is O(N?)
« Edge weight = segment length

« O(MlogM) = 0O(N4logN) time
* O(NlogN) possible!

* Does geometry help?
« Do we need to consider
every possible edge?

4/15/24 CompSci 201, Spring 2024, L25: MSTs

36



Geometric Structure

* Intuition: The corresponding graph is not arbitrary

« Edges cannot be just anything — they are exactly their
distance measured in the plane (ex. below is absurd)

500
100

4/15/24 CompSci 201, Spring 2024, L25: MSTs 37



Geometric Structure

* Intuition: The corresponding graph is not arbitrary

« Edges cannot be just anything — they are exactly their
distance measured in the plane

» Example of useful structure:
« Any two incident edges must make >60° angle

* |f <60° angle, opposite edge is shorter than one of the
incident edges; use it instead

4/15/24 CompSci 201, Spring 2024, L25: MSTs 38



Yao Graph

 k-Yao Graph: For each point, include only segments
to closest neighbor in each of k slices
» Example with k = 5 shown;

Empty
Theorem: The 6-Yao
Graph contains the

Euclidean MST (each
slice is 60°)

Empty

https://drops.dagstuhl.de/storage/00lipics/lipics-vol265-
5€a2023/LIPlcs.SEA.2023.20/LIPIcs.SEA.2023.20.pdf

4/15/24 CompSci 201, Spring 2024, L25: MSTs

39



Putting It All Together

« Any Euclidean MST (EMST) makes angles >60°

« The 6-(slice) Yao Graph contains the EMST and has
only O(N) edges

* Improved algorithm:
« Compute the Yao Graph in O(N log N) time [Chang et al. ‘90]
« Run Kruskal's on the graph in only O(N log N) time

« Much faster than O(N?log N)!



Punchline

 Realistic settings have additional constraints

« Sometimes can be exploited to give better solutions
than those for more general settings

» Take Alex’'s class on Applied Computational
Geometry!

« CS 290, Fall 2024



