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Logistics, coming up
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• Today, Monday, 4/22
• Project P6: Route (last project) due

• Extra credit! 3 surveys for 0.5% final grade each:
• Official course evals (>70% completion)
• End-of-semester survey (individual completion)
• AiiCE survey (>70% completion)
• Due 4/27 @ midnight

• Next week on Tuesday, 4/30
• Final exam, 9 am-12pm
• Required, comprehensive



Final Exam Policy Reminder

• Final exam composed of 3 parts:
• F1, F2, F3 corresponding to 3 midterms M1, M2, M3.
• Final Exam Grade: F1 + F2 + F3
• Midterm Exam i (=1,2,3) Grade: Max(Fi,Mi)

• The four exam grades compose 11% of overall course 
grade each
• Due to replacement policy, the final may compose up to 44% of 

your course overall (replace all 3 midterm grades)

• May bring three 8.5”x11” double-sided reference sheets

• Any questions on MSTs, disjoint sets, later material are 
extra credit on final exam grade (expect a few!)
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Final Grade Estimates

• By this weekend, all grades should be on Canvas
• (Aiming to get most up on Thursday, ideally all)

• Will provide a final grade estimate with a 0% on final

• Will announce ASAP when these are ready
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Today’s Agenda

1. Review Minimum Spanning Tree (MST) problem 
and Kruskal’s Algorithm

2. Investigate efficient disjoint sets / union find data 
structure

3. (Time-permitting) Euclidean Minimum Spanning 
Trees
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Minimum Spanning Tree 
(MST) and Greedy Graph 
Algorithms
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Minimum Spanning Tree (MST) 
Problem 

• Given N nodes and M edges, each with a weight/cost…

• Find a set of edges that connect all the nodes with 
minimum total cost (will be a tree)
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Weighted undirected 
graph with:
• Edges labeled with 

weights/costs
• Minimum spanning 

tree highlighted



Greedy Optimization Again: 
Kruskal’s Algorithm

• Initialize?

• All nodes in disjoint sets

• Partial solution?

• Forest of spanning trees in disjoint sets

• Greedy step?

• Choose the cheapest / least weight edge that 
connects two disjoint sets / trees, connect them. 
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Visualizing Kruskal’s Algorithm
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In the visualization:

• Edges between all pairs of 
vertices

• Weights are implicit by 
distances

• Algorithm greedily grows by 
cheapest edge that connects 
disjoint sets/trees.

By Shiyu Ji - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=54420894



Kruskal’s Algorithm in Pseudocode

Input: N node, M edges, M edge weights

• Initialize MST as empty set

• Let S be a collection of N disjoint sets, one per node

• While S has more than 1 set:

• Let (u, v) be the minimum cost remaining edge

• Find which sets u and v are in. If different sets:

• Union the sets together

• Add (u, v) to MST

• Return MST
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Kruskal’s Algorithm Runtime?

Input: N node, M edges, M edge weights

• Initialize MST as empty set

• Let S be a collection of N disjoint sets, one per node

• While S has more than 1 set:

• Let (u, v) be the minimum cost remaining edge

• Find which sets u and v are in. If different sets:

• Union the sets together

• Add (u, v) to MST

• Return MST
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Remove from 
binary heap, 

O(log(M))

Looping over 
(worst case) all M 

edges

Overall: O(M(log(M)+C)) where 
C is time for Union/Find



Disjoint Sets and 
Union-Find
DIYDisjointSets implementation viewable here: 
coursework.cs.duke.edu/cs-201-spring-24/diydisjointsets
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https://coursework.cs.duke.edu/cs-201-spring-24/diydisjointsets


Union-Find Data Structure

• AKA Disjoint-Set Data Structure

• Start with N distinct (disjoint) sets
• consider them labeled by integers: 0, 1, …

• Union two sets: create set containing both
• label with one of the numbers

• Find the set containing a number
• Initially self, but changes after unions
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Disjoint-Set Forest Implementation
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parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

• Each set will be represented by a parent “tree”: Instead 
of child pointers, nodes have a parent “pointer”.

• Everything starts as its own tree: a single node



Disjoint-Set Forest Union
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parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6

7

8

• Union(7,8)

• Make root parent[8] point to root parent[7]



Disjoint-Set Forest Union
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parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 4 5 6

7

8

• Union(3,4)

• Make root parent[4] point to root parent[3]

3



• Union(3,8)

• parent[8] is not the root anymore—Need to find its root first

• Use Find(8) operation

Disjoint-Set Forest Union
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parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8



• Find(8):

• Find root of tree containing 8.

• Follow parent pointers starting at parent[8]

• In this example, parent[7]

Disjoint-Set Forest Find
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parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 4 5 6

7

8

3

Find(8)



Disjoint-Set Forest Find
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parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

• Back to Union(3,8) 

• Set root of parent[8], which is Find(8) = parent[7], to root parent[3]

Find(8)



Disjoint-Set Forest Array 
Representation
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parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

• The “nodes” and “pointers” are just conceptual – 
can represent with a simple array, like binary heap.

• Parent array just stores what the itemID node 
points to.

0 1 2

3

4 5 6

7

8



Disjoint-Set Forest Find
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parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

root is just when 
parent[i] = i

Else go to next 
“node up”

0 1 2

3

4 5 6

7

8



Disjoint-Set Forest Union Revisited
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parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

roots from initial set1 
and initial set2 “nodes”

Make one “point to” other



Worst-Case Runtime Complexity?
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parent 0 0 1 2 3 4 5 6 7

itemID 0 1 2 3 4 5 6 7 8

5

6

7
8

…

What if we…
union(7,8)
union(6,7)
union(5,6)
…
union(0,1)

Now find(8) would have 
linear runtime complexity!!



Optimization 1: Union by Size
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A

B

Set 
of 

Size 
4

Set of 
Size 9

Be careful in how you union. 
Always make the “root” for 
the set with fewer elements 
point to the “root” for the set 
with more elements.

Sufficient for worst case 
logarithmic efficiency.



Optimization 1: Union by Size
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A

B Claim. Each element to root path 
has length at most O(log(N)) 
with union by size optimization.

Proof. 
• Consider an element a, initially 

a set of size 1.
• Each time the path length 

increases, the size of the set 
must at least double.

• Can happen at most O(log(N)) 
times with N initial sets.

Set 
of 

Size 
4

Set of 
Size 9



Optimization 1: Union by Size
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If already in same 
set, nothing to do.

Make the smaller 
set “point to” the 

bigger set.



Lazy Path Compression

• Lazy path compression: 
When ever you traverse a 
path in find, connect all 
the pointers to the top.

• Sufficient for amortized 
logarithmic runtime 
complexity for union/find 
operations.
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5

6

7
8

find(8)

5

6 7 8



Disjoint Set Forest Path 
Compression
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Get the root as before

Traverse path again, 
assigning everything to 

the root



Optimized Runtime Complexity

• Optimizations considered separately:
• Union by size: Worst-case logarithmic

• Path compression: Amortized logarithmic

• Considered together…?
• Worst-case logarithmic, and amortized inverse 

Ackermann function 𝜶 𝒏

• 𝛼 𝑛 < 5 for 𝑛 < 222216

= 22265536

• Number of atoms in observable universe only ~𝟏𝟎𝟖𝟎

• Practically constant for any n you can write down
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Remember Kruskal’s Algorithm 
Runtime?

Input: N node, M edges, M edge weights

• Let MST to an empty set

• Let S be a collection of N disjoint sets, one per node

• While S has more than 1 set:

• Let (u, v) be the minimum cost remaining edge

• Find which sets u and v are in. If different sets:

• Union the sets

• Add (u, v) to MST

• Return MST
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Remove from binary 
heap, O(log(M))

Looping over (worst 
case) all M edges

O(M(log(M)+C) = O(M log M) 
because C < log(M) for our 

optimized union find



L27-WOTO1-DisjointSets-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetID * 

1

solutions

Suppose we initialize a disjoint sets data structure with 10 sets (numbered 0 through 9), then 
do the following operations:

2



3

4

5

6

union(0, 1)
find(1)
union(2, 3)
union(0, 4)
union(4, 5)
union(1, 5)

How many disjoint sets remain / what is the size of the data structure at this point? * 

1

Consider the following array representation of a disjoint sets data structure. What would be 
returned by find(5)? * 

3



4

5

None of the above

2

3

4

5

Consider the same array representation of a disjoint sets data structure as the previous 
problem. How many sets have a single element? * 

4



Change the itemID 2 parent value to 4

Change the itemID 3 parent value to 4

Change the itemID 3 parent value to 5

Change the itemID 5 parent value to 2

Change the itemID 5 parent value to 3

Consider the same array representation of a disjoint sets data structure. Suppose we 
union(3,5). Which of the following updates would be performed under union by size 
optimization? * 

5

Select all that are true of the amortized runtime complexity of union/find operations on a 
disjoint sets forest data structure with union by size and path compression optimizations.  * 

6



Constant for n up to trillions

Constant for n up to the number of grains of sand on earth

Constant for n up to the number of seconds that have elapsed since the big bang

Constant for n up to the number of stars in the known/observed universe

Constant in the limit as n --> infinity

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.
Microsoft Forms | AI-Powered surveys, quizzes and polls Create my own form
Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423


Extensions of MST

• We described 𝑂 𝑀 log 𝑁 -time for “offline” case
• Entire input is given upfront (like all algs. in 201)

• 𝑂 𝑀𝛼 𝑁  is possible, avoids sorting [Chazelle ’99]

• Dynamic MST: How quickly can an MST be updated 
as the result of:
• Insertion of a new edge?
• Deletion of an edge?

• Need to recompute the entire MST from scratch?
• No! O(M+N) time suffices via BFS/DFS
• With advanced data structures, O(log N) possible

4/15/24 CompSci 201, Spring 2024, L25: MSTs 32



• Given 𝑁 points in the plane:
• Find spanning tree 𝑇 of the points

• Any segment between two points can be used

• # of edges is 𝑂 𝑁2

• Edge weight = segment length

Euclidean MST
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• Given 𝑁 points in the plane:
• Find spanning tree 𝑇 of the points

• Any segment between two points can be used

• # of edges is 𝑂 𝑁2

• Edge weight = segment length

Euclidean MST
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• Given 𝑁 points in the plane:
• Find spanning tree 𝑇 of the points

• Any segment between two points can be used

• # of edges is 𝑂 𝑁2

• Edge weight = segment length

• 𝑂 𝑀 log 𝑁 = 𝑂 𝑁2 log 𝑁  time

• Does geometry help?
• Do we need to consider

 every possible edge?

Euclidean MST
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• Given 𝑁 points in the plane:
• Find spanning tree 𝑇 of the points

• Any segment between two points can be used

• # of edges is 𝑂 𝑁2

• Edge weight = segment length

• 𝑂 𝑀 log 𝑀 = 𝑂 𝑁2 log 𝑁  time
• 𝑂 𝑁 log 𝑁  possible!

• Does geometry help?
• Do we need to consider

 every possible edge?

Euclidean MST
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• Intuition: The corresponding graph is not arbitrary
• Edges cannot be just anything --- they are exactly their 

distance measured in the plane (ex. below is absurd)

Geometric Structure
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• Intuition: The corresponding graph is not arbitrary
• Edges cannot be just anything --- they are exactly their 

distance measured in the plane

• Example of useful structure:
• Any two incident edges must make ≥60° angle

• If <60° angle, opposite edge is shorter than one of the 
incident edges; use it instead

Geometric Structure
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5

3.5

1.7
𝜃 < 60



• k-Yao Graph: For each point, include only segments 
to closest neighbor in each of k slices
• Example with 𝑘 = 5  shown

Yao Graph
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Empty

Empty
Theorem: The 6-Yao 
Graph contains the 
Euclidean MST (each 
slice is 60°)

https://drops.dagstuhl.de/storage/00lipics/lipics-vol265-
sea2023/LIPIcs.SEA.2023.20/LIPIcs.SEA.2023.20.pdf



Putting It All Together

• Any Euclidean MST (EMST) makes angles >60°

• The 6-(slice) Yao Graph contains the EMST and has 
only 𝑂 𝑁  edges

• Improved algorithm:
• Compute the Yao Graph in 𝑂 𝑁 log 𝑁  time [Chang et al. ‘90] 

• Run Kruskal’s on the graph in only 𝑂 𝑁 log 𝑁  time

• Much faster than 𝑂 𝑁2 log 𝑁 !
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Punchline

• Realistic settings have additional constraints

• Sometimes can be exploited to give better solutions 
than those for more general settings

• Take Alex’s class on Applied Computational 
Geometry!
• CS 290, Fall 2024
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