
4/15/24 CompSci 201, Spring 2024, L25: MSTs 1

L27: Disjoint Sets +
More MST

Alex Steiger

CompSci 201: Spring 2024

4/22/2024

Logistics, coming up

4/15/24 CompSci 201, Spring 2024, L25: MSTs 2

• Today, Monday, 4/22
• Project P6: Route (last project) due

• Extra credit! 3 surveys for 0.5% final grade each:
• Official course evals (>70% completion)
• End-of-semester survey (individual completion)
• AiiCE survey (>70% completion)
• Due 4/27 @ midnight

• Next week on Tuesday, 4/30
• Final exam, 9 am-12pm
• Required, comprehensive

Final Exam Policy Reminder

• Final exam composed of 3 parts:
• F1, F2, F3 corresponding to 3 midterms M1, M2, M3.
• Final Exam Grade: F1 + F2 + F3
• Midterm Exam i (=1,2,3) Grade: Max(Fi,Mi)

• The four exam grades compose 11% of overall course
grade each
• Due to replacement policy, the final may compose up to 44% of

your course overall (replace all 3 midterm grades)

• May bring three 8.5”x11” double-sided reference sheets

• Any questions on MSTs, disjoint sets, later material are
extra credit on final exam grade (expect a few!)

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 3

Final Grade Estimates

• By this weekend, all grades should be on Canvas
• (Aiming to get most up on Thursday, ideally all)

• Will provide a final grade estimate with a 0% on final

• Will announce ASAP when these are ready

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 4

Today’s Agenda

1. Review Minimum Spanning Tree (MST) problem
and Kruskal’s Algorithm

2. Investigate efficient disjoint sets / union find data
structure

3. (Time-permitting) Euclidean Minimum Spanning
Trees

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 5

Minimum Spanning Tree
(MST) and Greedy Graph
Algorithms

4/15/24 CompSci 201, Spring 2024, L25: MSTs 6

Minimum Spanning Tree (MST)
Problem

• Given N nodes and M edges, each with a weight/cost…

• Find a set of edges that connect all the nodes with
minimum total cost (will be a tree)

4/15/24 CompSci 201, Spring 2024, L25: MSTs 7

Weighted undirected
graph with:
• Edges labeled with

weights/costs
• Minimum spanning

tree highlighted

Greedy Optimization Again:
Kruskal’s Algorithm

• Initialize?

• All nodes in disjoint sets

• Partial solution?

• Forest of spanning trees in disjoint sets

• Greedy step?

• Choose the cheapest / least weight edge that
connects two disjoint sets / trees, connect them.

4/15/24 CompSci 201, Spring 2024, L25: MSTs 8

Visualizing Kruskal’s Algorithm

4/15/24 CompSci 201, Spring 2024, L25: MSTs 9

In the visualization:

• Edges between all pairs of
vertices

• Weights are implicit by
distances

• Algorithm greedily grows by
cheapest edge that connects
disjoint sets/trees.

By Shiyu Ji - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=54420894

Kruskal’s Algorithm in Pseudocode

Input: N node, M edges, M edge weights

• Initialize MST as empty set

• Let S be a collection of N disjoint sets, one per node

• While S has more than 1 set:

• Let (u, v) be the minimum cost remaining edge

• Find which sets u and v are in. If different sets:

• Union the sets together

• Add (u, v) to MST

• Return MST

4/15/24 CompSci 201, Spring 2024, L25: MSTs 10

Kruskal’s Algorithm Runtime?

Input: N node, M edges, M edge weights

• Initialize MST as empty set

• Let S be a collection of N disjoint sets, one per node

• While S has more than 1 set:

• Let (u, v) be the minimum cost remaining edge

• Find which sets u and v are in. If different sets:

• Union the sets together

• Add (u, v) to MST

• Return MST

4/15/24 CompSci 201, Spring 2024, L25: MSTs 11

Remove from
binary heap,

O(log(M))

Looping over
(worst case) all M

edges

Overall: O(M(log(M)+C)) where
C is time for Union/Find

Disjoint Sets and
Union-Find
DIYDisjointSets implementation viewable here:
coursework.cs.duke.edu/cs-201-spring-24/diydisjointsets

4/15/24 CompSci 201, Spring 2024, L25: MSTs 12

https://coursework.cs.duke.edu/cs-201-spring-24/diydisjointsets

Union-Find Data Structure

• AKA Disjoint-Set Data Structure

• Start with N distinct (disjoint) sets
• consider them labeled by integers: 0, 1, …

• Union two sets: create set containing both
• label with one of the numbers

• Find the set containing a number
• Initially self, but changes after unions

4/15/24 CompSci 201, Spring 2024, L25: MSTs 13

Disjoint-Set Forest Implementation

4/15/24 CompSci 201, Spring 2024, L25: MSTs 14

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

• Each set will be represented by a parent “tree”: Instead
of child pointers, nodes have a parent “pointer”.

• Everything starts as its own tree: a single node

Disjoint-Set Forest Union

4/15/24 CompSci 201, Spring 2024, L25: MSTs 15

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6

7

8

• Union(7,8)

• Make root parent[8] point to root parent[7]

Disjoint-Set Forest Union

4/15/24 CompSci 201, Spring 2024, L25: MSTs 16

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 4 5 6

7

8

• Union(3,4)

• Make root parent[4] point to root parent[3]

3

• Union(3,8)

• parent[8] is not the root anymore—Need to find its root first

• Use Find(8) operation

Disjoint-Set Forest Union

4/15/24 CompSci 201, Spring 2024, L25: MSTs 17

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

• Find(8):

• Find root of tree containing 8.

• Follow parent pointers starting at parent[8]

• In this example, parent[7]

Disjoint-Set Forest Find

4/15/24 CompSci 201, Spring 2024, L25: MSTs 18

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 4 5 6

7

8

3

Find(8)

Disjoint-Set Forest Find

4/15/24 CompSci 201, Spring 2024, L25: MSTs 19

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

• Back to Union(3,8)

• Set root of parent[8], which is Find(8) = parent[7], to root parent[3]

Find(8)

Disjoint-Set Forest Array
Representation

4/15/24 CompSci 201, Spring 2024, L25: MSTs 20

parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

• The “nodes” and “pointers” are just conceptual –
can represent with a simple array, like binary heap.

• Parent array just stores what the itemID node
points to.

0 1 2

3

4 5 6

7

8

Disjoint-Set Forest Find

4/15/24 CompSci 201, Spring 2024, L25: MSTs 21

parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

root is just when
parent[i] = i

Else go to next
“node up”

0 1 2

3

4 5 6

7

8

Disjoint-Set Forest Union Revisited

4/15/24 CompSci 201, Spring 2024, L25: MSTs 22

parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

roots from initial set1
and initial set2 “nodes”

Make one “point to” other

Worst-Case Runtime Complexity?

4/15/24 CompSci 201, Spring 2024, L25: MSTs 23

parent 0 0 1 2 3 4 5 6 7

itemID 0 1 2 3 4 5 6 7 8

5

6

7
8

…

What if we…
union(7,8)
union(6,7)
union(5,6)
…
union(0,1)

Now find(8) would have
linear runtime complexity!!

Optimization 1: Union by Size

4/15/24 CompSci 201, Spring 2024, L25: MSTs 24

A

B

Set
of

Size
4

Set of
Size 9

Be careful in how you union.
Always make the “root” for
the set with fewer elements
point to the “root” for the set
with more elements.

Sufficient for worst case
logarithmic efficiency.

Optimization 1: Union by Size

4/15/24 CompSci 201, Spring 2024, L25: MSTs 25

A

B Claim. Each element to root path
has length at most O(log(N))
with union by size optimization.

Proof.
• Consider an element a, initially

a set of size 1.
• Each time the path length

increases, the size of the set
must at least double.

• Can happen at most O(log(N))
times with N initial sets.

Set
of

Size
4

Set of
Size 9

Optimization 1: Union by Size

4/15/24 CompSci 201, Spring 2024, L25: MSTs 26

If already in same
set, nothing to do.

Make the smaller
set “point to” the

bigger set.

Lazy Path Compression

• Lazy path compression:
When ever you traverse a
path in find, connect all
the pointers to the top.

• Sufficient for amortized
logarithmic runtime
complexity for union/find
operations.

4/15/24 CompSci 201, Spring 2024, L25: MSTs 27

5

6

7
8

find(8)

5

6 7 8

Disjoint Set Forest Path
Compression

4/15/24 CompSci 201, Spring 2024, L25: MSTs 28

Get the root as before

Traverse path again,
assigning everything to

the root

Optimized Runtime Complexity

• Optimizations considered separately:
• Union by size: Worst-case logarithmic

• Path compression: Amortized logarithmic

• Considered together…?
• Worst-case logarithmic, and amortized inverse

Ackermann function 𝜶 𝒏

• 𝛼 𝑛 < 5 for 𝑛 < 222216

= 22265536

• Number of atoms in observable universe only ~𝟏𝟎𝟖𝟎

• Practically constant for any n you can write down

4/15/24 CompSci 201, Spring 2024, L25: MSTs 29

Remember Kruskal’s Algorithm
Runtime?

Input: N node, M edges, M edge weights

• Let MST to an empty set

• Let S be a collection of N disjoint sets, one per node

• While S has more than 1 set:

• Let (u, v) be the minimum cost remaining edge

• Find which sets u and v are in. If different sets:

• Union the sets

• Add (u, v) to MST

• Return MST

4/15/24 CompSci 201, Spring 2024, L25: MSTs 30

Remove from binary
heap, O(log(M))

Looping over (worst
case) all M edges

O(M(log(M)+C) = O(M log M)
because C < log(M) for our

optimized union find

L27-WOTO1-DisjointSets-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.

* Required

NetID *

1

solutions

Suppose we initialize a disjoint sets data structure with 10 sets (numbered 0 through 9), then
do the following operations:

2

3

4

5

6

union(0, 1)
find(1)
union(2, 3)
union(0, 4)
union(4, 5)
union(1, 5)

How many disjoint sets remain / what is the size of the data structure at this point? *

1

Consider the following array representation of a disjoint sets data structure. What would be
returned by find(5)? *

3

4

5

None of the above

2

3

4

5

Consider the same array representation of a disjoint sets data structure as the previous
problem. How many sets have a single element? *

4

Change the itemID 2 parent value to 4

Change the itemID 3 parent value to 4

Change the itemID 3 parent value to 5

Change the itemID 5 parent value to 2

Change the itemID 5 parent value to 3

Consider the same array representation of a disjoint sets data structure. Suppose we
union(3,5). Which of the following updates would be performed under union by size
optimization? *

5

Select all that are true of the amortized runtime complexity of union/find operations on a
disjoint sets forest data structure with union by size and path compression optimizations. *

6

Constant for n up to trillions

Constant for n up to the number of grains of sand on earth

Constant for n up to the number of seconds that have elapsed since the big bang

Constant for n up to the number of stars in the known/observed universe

Constant in the limit as n --> infinity

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.
Microsoft Forms | AI-Powered surveys, quizzes and polls Create my own form
Privacy and cookies | Terms of use

https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

Extensions of MST

• We described 𝑂 𝑀 log 𝑁 -time for “offline” case
• Entire input is given upfront (like all algs. in 201)

• 𝑂 𝑀𝛼 𝑁 is possible, avoids sorting [Chazelle ’99]

• Dynamic MST: How quickly can an MST be updated
as the result of:
• Insertion of a new edge?
• Deletion of an edge?

• Need to recompute the entire MST from scratch?
• No! O(M+N) time suffices via BFS/DFS
• With advanced data structures, O(log N) possible

4/15/24 CompSci 201, Spring 2024, L25: MSTs 32

• Given 𝑁 points in the plane:
• Find spanning tree 𝑇 of the points

• Any segment between two points can be used

• # of edges is 𝑂 𝑁2

• Edge weight = segment length

Euclidean MST

4/15/24 CompSci 201, Spring 2024, L25: MSTs 33

• Given 𝑁 points in the plane:
• Find spanning tree 𝑇 of the points

• Any segment between two points can be used

• # of edges is 𝑂 𝑁2

• Edge weight = segment length

Euclidean MST

4/15/24 CompSci 201, Spring 2024, L25: MSTs 34

• Given 𝑁 points in the plane:
• Find spanning tree 𝑇 of the points

• Any segment between two points can be used

• # of edges is 𝑂 𝑁2

• Edge weight = segment length

• 𝑂 𝑀 log 𝑁 = 𝑂 𝑁2 log 𝑁 time

• Does geometry help?
• Do we need to consider

 every possible edge?

Euclidean MST

4/15/24 CompSci 201, Spring 2024, L25: MSTs 35

• Given 𝑁 points in the plane:
• Find spanning tree 𝑇 of the points

• Any segment between two points can be used

• # of edges is 𝑂 𝑁2

• Edge weight = segment length

• 𝑂 𝑀 log 𝑀 = 𝑂 𝑁2 log 𝑁 time
• 𝑂 𝑁 log 𝑁 possible!

• Does geometry help?
• Do we need to consider

 every possible edge?

Euclidean MST

4/15/24 CompSci 201, Spring 2024, L25: MSTs 36

• Intuition: The corresponding graph is not arbitrary
• Edges cannot be just anything --- they are exactly their

distance measured in the plane (ex. below is absurd)

Geometric Structure

4/15/24 CompSci 201, Spring 2024, L25: MSTs 37

5

100

500

• Intuition: The corresponding graph is not arbitrary
• Edges cannot be just anything --- they are exactly their

distance measured in the plane

• Example of useful structure:
• Any two incident edges must make ≥60° angle

• If <60° angle, opposite edge is shorter than one of the
incident edges; use it instead

Geometric Structure

4/15/24 CompSci 201, Spring 2024, L25: MSTs 38

5

3.5

1.7
𝜃 < 60

• k-Yao Graph: For each point, include only segments
to closest neighbor in each of k slices
• Example with 𝑘 = 5 shown

Yao Graph

4/15/24 CompSci 201, Spring 2024, L25: MSTs 39

Empty

Empty
Theorem: The 6-Yao
Graph contains the
Euclidean MST (each
slice is 60°)

https://drops.dagstuhl.de/storage/00lipics/lipics-vol265-
sea2023/LIPIcs.SEA.2023.20/LIPIcs.SEA.2023.20.pdf

Putting It All Together

• Any Euclidean MST (EMST) makes angles >60°

• The 6-(slice) Yao Graph contains the EMST and has
only 𝑂 𝑁 edges

• Improved algorithm:
• Compute the Yao Graph in 𝑂 𝑁 log 𝑁 time [Chang et al. ‘90]

• Run Kruskal’s on the graph in only 𝑂 𝑁 log 𝑁 time

• Much faster than 𝑂 𝑁2 log 𝑁 !

4/15/24 CompSci 201, Spring 2024, L25: MSTs 40

Punchline

• Realistic settings have additional constraints

• Sometimes can be exploited to give better solutions
than those for more general settings

• Take Alex’s class on Applied Computational
Geometry!
• CS 290, Fall 2024

4/15/24 CompSci 201, Spring 2024, L25: MSTs 41

