L27: Disjoint Sets +
More MST

Alex Steiger
CompSci 201: Spring 2024
4/22/2024

Logistics, coming up

» Today, Monday, 4/22
« Project P6: Route (last project) due

« Extra credit! 3 surveys for 0.5% final grade each:
« Official course evals (>70% completion)
« End-of-semester survey (individual completion)
« AIiCE survey (>70% completion)
« Due 4/27 @ midnight

« Next week on Tuesday, 4/30
« Final exam, 9 am-12pm
» Required, comprehensive

Final Exam Policy Reminder

« Final exam composed of 3 parts:
« F1,F2, F3 corresponding to 3 midterms M1, M2, M3.
« Final Exam Grade: F1 +F2 + F3
» Midterm Exam i (=1,2,3) Grade: Max(FiMi)

* The four exam grades compose 11% of overall course
grade each

« Due to replacement policy, the final may compose up to 44% of
your course overall (replace all 3 midterm grades)

» May bring three 8.5"x11" double-sided reference sheets

« Any questijons on MSTs, disjoint sets, later material are
extra credit on final exam grade (expect a few!)

4/23/2024




Final Grade Estimates

* By this weekend, all grades should be on Canvas
« (Aiming to get most up on Thursday, ideally all)

« Will provide a final grade estimate with a 0% on final

« Will announce ASAP when these are ready

Today's Agenda

1. Review Minimum Spanning Tree (MST) problem
and Kruskal's Algorithm

2. Investigate efficient disjoint sets / union find data
structure

3. (Time-permitting) Euclidean Minimum Spanning
Trees

Minimum Spanning Tree
(MST) and Greedy Graph
Algorithms

4/23/2024




4/23/2024

Minimum Spanning Tree (MST)
Problem

« Given N nodes and M edges, each with a weight/cost...

« Find a set of edges that connect all the nodes with
minimum total cost (will be a tree)

Weighted undirected
graph with:

« Edges labeled with
weights/costs

+ Minimum spanning
tree highlighted

Greedy Optimization Again:
Kruskal's Algorithm

« Initialize?
« All nodes in disjoint sets

« Partial solution?
« Forest of spanning trees in disjoint sets

* Greedy step?
» Choose the cheapest / least weight edge that
connects two disjoint sets / trees, connect them.

Visualizing Kruskal's Algorithm

In the visualization:

+ Edges between all pairs of i ' ©
vertices °

* Weights are implicit by R
distances o

* Algorithm greedily grows by o -0
cheapest edge that connects £ 0 © o«
disjoint sets/trees. o




Kruskal's Algorithm in Pseudocode

Input: N node, M edges, M edge weights
« Initialize MST as empty set
* Let S be a collection of N disjoint sets, one per node

* While S has more than 1 set:
« Let (u, v) be the minimum cost remaining edge
* Find which sets u and v are in. If different sets:
* Union the sets together
+ Add (u, v) to MST

« Return MST

10

Kruskal's Algorithm Runtime?

Looping over
(worst case) all M
edges

€ per node

Input: N node, M edges, M edge weights
« Initialize MST as empty set

* Let S be a collection of N disjoint se

* While S has more than 1 set:

« Let (u, v) be the minimum cost remaining edge

* Find which sets u and v are in. If differenjsets:

* Union the sets together

* Add (U: V) to MST Remove from

« Return MST TRy D)

O(log(M))

Overall: O(M(log(M)+C)) where
C is time for Union/Find

11

Disjoint Sets and
Union-Find

DIYDisjointSets implementation viewable here:
coursework.cs.duke.edu/cs-201-spring-24/diydisjointsets

12

4/23/2024



https://coursework.cs.duke.edu/cs-201-spring-24/diydisjointsets

Union-Find Data Structure
» AKA Disjoint-Set Data Structure

« Start with N distinct (disjoint) sets
« consider them labeled by integers: 0, 1, ...

« Union two sets: create set containing both
« label with one of the numbers

* Find the set containing a number
« Initially self, but changes after unions

13

Disjoint-Set Forest Implementation

« Each set will be represented by a parent “tree”: Instead
of child pointers, nodes have a parent “pointer”.

« Everything starts as its own tree: a single node

——

itemID 0 1

14

Disjoint-Set Forest Union

« Union(7,8)
« Make root parent[8] point to root parent[7]

I

itemID 0 1

15

4/23/2024




Disjoint-Set Forest Union

« Union(3,4)
« Make root parent[4] point to root parent[3]

LIﬁll.T.&I.T.

itemID 0 1

16

Disjoint-Set Forest Union

« Union(3,8)

« parent[8] is not the root anymore—Need to find its root first
« Use Find(8) operation

llﬁllmrl

itemID 0

17
Disjoint-Set Forest Find
« Find(8):
« Find root of tree containing 8.
« Follow parent pointers starting at parent[g] F‘”d

« In this example, parent[7]

;:.;m;l:

itemID 0 1

18

4/23/2024




Disjoint-Set Forest Find

« Back to Union(3,8)
« Set root of parent[8], which is Find(8) = parent[7], to root parent[3]

Find(8)
re
itemID 0 1 4 B 6 7

19

Disjoint-Set Forest Array
Representation
» The “nodes” and “pointers” are just conceptual —

can represent with a simple array, like binary heap.

« Parent array just stores what the itemID node
points to.

000 o 0
ﬂ-----ﬂ--

itemID 0 1

20

Disjoint-Set Forest Find

18 public int find(int id) { m
19 while (id != parent[id]) {

20 id = parent[id];
21 }

22 return id;

23 }

000 \000 \0

S ﬂ-----ﬂ--

itemID 0

21

4/23/2024




Disjoint-Set Forest Union Revisited

25 public veid union(int setl, int set2) {
26 int rootl = find(setl);
27 int rootZ = find(set2);
28 parent[root2] = rootl;

roots from initial set1
and initial set2 ‘nodes”

000 e 0
et 01112 oo 5 Jo 37 |
2 3 4 B 6 7 8

itemID 0 1

22

Worst-Case Runtime Complexity?

What if we...

25 public veid union(int setl, int set2) { union(7,8)

26 int rootl = find(setl); .
27 int root2 = find(set2); un:.Lon(6,7)
28 parent[root2] = rootl; union(5,6)

union(@,1)

Now find(8) would have
linear runtime complexity!! \e\@*\a

ezl OO O U (2 I I IO A
2 3 4 5 6 7 8

item/D 0O 1

23

Be careful in how you union.
Always make the “root” for
the set with fewer elements
point to the “root” for the set
with more elements.

Sufficient for worst case
logarithmic efficiency.

4/15/24 CompSci 201, Spring 2024, L25: MSTs 24

24

4/23/2024




25

26

27

Optimization 1: Union by Size

Claim. Each element to root path
has length at most O(log(N))
with union by size optimization.

Proof.

+ Consider an element a, initially
a set of size 1.

Each time the path length
increases, the size of the set
must at least double.

Can happen at most O(log(N))
times with N initial sets.

mps Spring

Optimization 1: Union by Size

37 public void union(int setl, int set2) { If already in same
38 int rootl = find(setl); set, nothing to do.
39 int root2 = find(set2);

40 if (rootl == root2) { return; }

41 if (setSizes[rootl] < setSizes[root2]) {

42 parent[rootl] = root2;

43 setSizes[root2] += setSizes[rootl];

= |
45 else { set “point to” the
46 parent[root2] = rootl; bigger set.
47 setSizes[rootl] += setSizes[root2];

48 3}

49 size--;

s}

Lazy Path Compression

« Lazy path compression:

o
When ever you traverse a \e’\‘
0

path in find, connect all
the pointers to the top.
find(8)

« Sufficient for amortized

logarithmic runtime
complexity for union/find
operations.

4/23/2024




Disjoint Set Forest Path
Compression

8 public int find(int id) {
9 int idCopy = id;
o while (id != parent[id]) {
2 }
13 int root = id;
14 id = idCopy; Traverse path again,
15 while(id != parent[id]) { assigning everything to
16 parent[idCopy] = root; the root
17 id = parent[id];
18 idCopy = id;
19 }
20 return id;
21}
Spring . 8

28

Optimized Runtime Complexity

« Optimizations considered separately:
« Union by size: Worst-case logarithmic
« Path compression: Amortized logarithmic

» Considered together...?
« Worst-case logarithmic, and amortized inverse
Ackermann function a(n)

216 65536
e a(n) <5 forn<22” =22

« Number of atoms in observable universe only ~108°
« Practically constant for any n you can write down

29

Remember Kruskal's Algorithm
Runtime?

Input: N node, M edges, M edge weights
* Let MST to an empty set
* Let S be a collection of N disjoint se
* While S has more than 1 set:
« Let (u, v) be the minimum cost remaining edge
* Find which sets u and v are in. If different s@is:
* Union the sets
« Add (u, v) to MST
* Return MST

Looping over (worst
case) all M edges
per node

Remove from binary
heap, O(log(M))

0(M(log(M)+C) = O(M log M)
because C < log(M) for our
optimized union find

omps Spring

30

4/23/2024

10



L27-WOTO1-DisjointSets-Sp24

Hi, Alexander. When you submit this form, the owner will see your name and email address.
* Required
NetlD * [T}

solutions

2

Suppose we initialize a disjoint sets data structure with 10 sets (numbered 0 through 9), then
do the following operations:



union(0, 1)
find(1)

union(2, 3)
union(0, 4)
union(4, 5)
union(1, 5)

How many disjoint sets remain / what is the size of the data structure at this point? * [T}

3

Consider the following array representation of a disjoint sets data structure. What would be
returned by find(5)? * [

itemID O

(O 1



@ ¢
(s

O None of the above

4

Consider the same array representation of a disjoint sets data structure as the previous
problem. How many sets have a single element? * [1}

itemID O



5

Consider the same array representation of a disjoint sets data structure. Suppose we
union(3,5). Which of the following updates would be performed under union by size

optimization? * [T}

itemlD O

@ Change the itemID 2 parent value to 4
O Change the itemID 3 parent value to 4
O Change the itemID 3 parent value to 5
O Change the itemlID 5 parent value to 2

O Change the itemID 5 parent value to 3

6

Select all that are true of the amortized runtime complexity of union/find operations on a
disjoint sets forest data structure with union by size and path compression optimizations. *

[



Constant for n up to trillions

Constant for n up to the number of grains of sand on earth

Constant for n up to the number of seconds that have elapsed since the big bang
Constant for n up to the number of stars in the known/observed universe

D Constant in the limit as n --> infinity

B Microsoft 365

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the
privacy or security practices of its customers, including those of this form owner. Never give out your password.

Microsoft Forms | Al-Powered surveys, quizzes and polls Create my own form

Privacy and cookies | Terms of use


https://go.microsoft.com/fwlink/p/?linkid=857875
https://go.microsoft.com/fwlink/p/?LinkId=2083423

Extensions of MST

* We described 0(M log N)-time for “offline” case
« Entire input is given upfront (like all algs. in 207)
+ 0(Ma(N)) is possible, avoids sorting [Chazelle '99]

* Dynamic MST: How quickly can an MST be updated
as the result of:
« Insertion of a new edge?
« Deletion of an edge?

« Need to recompute the entire MST from scratch?
» No! O(M+N) time suffices via BFS/DFS
« With advanced data structures, O(log N) possible

32

Euclidean MST

« Given N points in the plane:
* Find spanning tree T of the points
« Any segment between two points can be used
« #of edgesis O(N?) . .
+ Edge weight = segment length °

33

Euclidean MST

« Given N points in the plane:
« Find spanning tree T of the points
« Any segment between two points can be used
« #of edgesis O(N?) °
« Edge weight = segment length

34

4/23/2024

11



4/23/2024

Euclidean MST

« Given N points in the plane:
« Find spanning tree T of the points
* Any segment between two points can be used
« #of edgesis O(N?) . Vd
* Edge weight = segmentlength /"~ of

* 0(MlogN) = O(N*logN) time .

» Does geometry help? o S y
« Do we need to consider [, ?
every possible edge? N J

35

Euclidean MST

« Given N points in the plane:
* Find spanning tree T of the points
« Any segment between two points can be used
« #of edgesis O(N?) . V4
+ Edge weight = segmentlength 7~~~ of

« 0(MlogM) = O(N?logN) time
* O(NlogN) possible!

» Does geometry help?
» Do we need to consider “ S ‘
every possible edge? ¢ s

36

Geometric Structure

« Intuition: The corresponding graph is not arbitrary

« Edges cannot be just anything -— they are exactly their
distance measured in the plane (ex. below is absurd)

500

100

37

12



Geometric Structure

« Intuition: The corresponding graph is not arbitrary

 Edges cannot be just anything -— they are exactly their
distance measured in the plane

5 s
0 <60 -7
17

3.5

« Example of useful structure:
+ Any two incident edges must make >60° angle

« If <60° angle, opposite edge is shorter than one of the
incident edges; use it instead

38

Yao Graph

* k-Yao Graph: For each point, include only segments
to closest neighbor in each of k slices
« Example with k = 5 shown

Theorem: The 6-Yao ”
Graph contains the
Euclidean MST (each
slice is 60°)

Empty

Empty

39

Putting It All Together

* Any Euclidean MST (EMST) makes angles >60°

* The 6-(slice) Yao Graph contains the EMST and has
only O(N) edges

« Improved algorithm:
» Compute the Yao Graph in O(N log N) time [Chang et al. ‘90]
« Run Kruskal's on the graph in only O(N log N) time

» Much faster than 0(N?log N)!

40

4/23/2024

13



Punchline

« Realistic settings have additional constraints

» Sometimes can be exploited to give better solutions
than those for more general settings

» Take Alex’s class on Applied Computational
Geometry!
« CS 290, Fall 2024

41

4/23/2024

14



