
4/23/2024

1

4/24/24 CompSci 201, Spring 2024, L28: LDOC 1

L28: LDOC and the
Limits of Computing

Alex Steiger

CompSci 201: Spring 2024

4/24/2024

Logistics, coming up

4/24/24 CompSci 201, Spring 2024, L28: LDOC 2

• Extra credit! 3 surveys for 0.5% final grade each:
• Official course evals (>70% completion)

• End-of-semester survey (individual completion)

• AiiCE survey (>70% completion)

• Due 4/27 @ midnight

• Next week on Tuesday, 4/30
• Final exam, 9am-12pm

• Required, comprehensive

Looking back at our
semester

4/24/24 CompSci 201, Spring 2024, L28: LDOC 3

1

2

3

4/23/2024

2

What are algorithms?

Intuitive English

Precise English

Pseudocode

Software

4

Algorithm Design
• Mathematical
• Logic of program
• Problem-solving
• Language independent

Implementation
• Semantics and Syntax
• Language dependent
• Programming on a

real machine

Loosely speaking: A precise sequence of
unambiguous steps that effectively compute an
output given an input.

4/24/24 CompSci 201, Spring 2024, L28: LDOC

What is code?

In order to execute an algorithm on a real computer,
we must write the algorithm in a formal language. An
algorithm so written is a program.

In this class we explore both:

4/24/24 CompSci 201, Spring 2024, L28: LDOC 5

Theory

• Design an algorithm

• Analyze performance

• Data structure
tradeoffs

Practice

• Write a Java program

• Debug/test

• Measure performance

Why does efficiency matter?

• You wrote the next big social media app:
• Will it work if it has 1 billion users?
• What about on a phone with limited memory?

• In the sciences, discovery depends on computing
with big data:
• Sequencing the human genome
• Surveying millions of images in astronomy
• Processing data logs from the CERN collider

• Pushing the limits of current technology:
• Virtual / augmented reality?
• Deep neural networks for large scale machine learning?

4/24/24 CompSci 201, Spring 2024, L28: LDOC 6

4

5

6

4/23/2024

3

Some specifics you will did
learn

Data Structures
• Arrays

• Lists: ArrayList and LinkedList

• Sets: HashSet and TreeSet

• Maps: HashMap and TreeMap

• Stacks, Queues, Priority Queues /
Heaps

• Trees: Binary Search Trees

• Graph representations

Algorithms
• Iterative

• Hashing

• Big O Asymptotic Analysis

• Recursive

• Sorting

• Greedy

• Graph

4/24/24 CompSci 201, Spring 2024, L28: LDOC 7

Software

• Java API

• Objects, Classes

• Interfaces, implementations

• Testing, Debugging

Informal goals for the course

• Make or deepen a friendship with someone else
passionate about computer science.

• Develop a new appreciation of computing
phenomena you see in the real world.

• Experience joy when your program works, even if it
took a while to get it there.

• WOTO: WOrking TOgether

• Stay safe and healthy, physically and mentally

4/24/24 CompSci 201, Spring 2024, L28: LDOC 8

Who to Thank

• Violet (Teaching Associate), Mark and Eamon (Grad
TAs) working behind the scenes to make this work
at scale

• All of our undergrad TAs! Providing feedback, helper
hours, running discussions, etc.

• Your fellow students! Discussion groups, friends,
project partners, etc.

4/24/24 CompSci 201, Spring 2024, L28: LDOC 9

7

8

9

4/23/2024

4

What I’m thankful for

4/24/24 CompSci 201, Spring 2024, L28: LDOC 10

• Safety to gather and be together

• My teaching team

• All of you (why am I here?!?!?)

Parting Thoughts:
What computers can
and can’t do?

4/24/24 CompSci 201, Spring 2024, L28: LDOC 12

What can computers do?

4/24/24 CompSci 201, Spring 2024, L28: LDOC 13

10

12

13

4/23/2024

5

What can’t computers do?

• Some problems cannot be solved at all
• One program detects all infinite loops

• Some problems cannot be solved efficiently
• Listing all N-bit sequences of 0's and 1's

• Some problems can be approximately solved
• AI, ML, close-to-optimal is good enough

4/24/24 CompSci 201, Spring 2024, L28: LDOC 14

Halting Problem

• Can we write doesHalt as specified? Suppose so!
• Like the Java Compiler: reads a program

4/24/24 CompSci 201, Spring 2024, L28: LDOC 15

public class ProgramUtils

 /**

 * Returns true if progname halts on input,

 * otherwise returns false (infinite loop)

 */

 public static boolean doesHalt(String progname){

 }

}

Can we confuse doesHalt?

• What if doesHalt(confuse) returns true?

• Then confuse() does not halt (see below)

• What if doesHalt(confuse) returns false?

• Then confuse() does halt (see below)

4/24/24 CompSci 201, Spring 2024, L28: LDOC 16

public static boolean confuse(){

 if (ProgramUtils.doesHalt(confuse)) {

 while (true) {

 // do nothing forever

 }

 }

}

14

15

16

4/23/2024

6

Formal proof is a bit more
challenging…

• Alan Turing first showed this for programs: 1936
• Had to formally specify what a program was

• Needed to invent concept of Turing Machine

• Also demonstrated by Alonzo Church

• Cantor showed # Real Numbers > # Rationals
• So-called diagonalization, 1891

• Ridiculed by establishment

• Argument essential to above

4/24/24 CompSci 201, Spring 2024, L28: LDOC 17

Shortest/Longest Path; P and NP

• Dijkstra's Algorithm one example
• Others: Floyd-Warshall and more

• Very efficient graph algorithms,

• Longest Path? No efficient solution known
• Easy to verify "is this path greater than length k"

• Exponentially many paths

4/24/24 CompSci 201, Spring 2024, L28: LDOC 18

P vs NP

• P is the set of (algorithmic) problems that can be solved
in time that is polynomial in the size of the input
(polynomial time).
• i.e., can solve with a program that is O(1), O(N), O(Nlog(N)),

O(N2), O(N3), …, O(N128), …

• NP is (roughly) the set of (algorithmic) problems for
which a solution can be verified in polynomial time.

4/24/24 CompSci 201, Spring 2024, L28: LDOC 19

17

18

19

4/23/2024

7

P ?= NP

4/24/24 CompSci 201, Spring 2024, L28: LDOC 20

By Behnam Esfahbod, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=3532181

• Most think P != NP

• Greatest outstanding
question in theoretical
computer science

• Proof is worth a $1M
prize from the Clay
Mathematics Institute

“Easy” Hard Problems

• Some problems are hard to solve but easy to approximate:

• Can’t write a program to give you the optimal solution
efficiently but can find something within 𝜖 of optimal in
polynomial time.

• Greedy, randomized, etc.

• Some problems are hard to prove things in theory but easy
to solve in practice

• Can’t prove much but it works well in practice

4/24/24 CompSci 201, Spring 2024, L28: LDOC 21

AI/ML often work with
experimental algorithms for hard

problems

4/24/24 CompSci 201, Spring 2024, L28: LDOC 22

Common idea: Use a
computer to learn a
function/neural network that
approximates a large
dataset.
• Image segmentation/

classification
• Face/speech recognition
• Machine translation
• Text generation
• Reinforcement learning
• Robotics
• …

20

21

22

4/23/2024

8

Artificial Intelligence: ChatGPT and
Reinforcement Learning

4/24/24 CompSci 201, Spring 2024, L28: LDOC 23

More Concerning? Deepfakes and
Generative Adversarial Networks

(GANs)

4/24/24 CompSci 201, Spring 2024, L28: LDOC 24

What should computers do?

4/24/24 CompSci 201, Spring 2024, L28: LDOC 25

23

24

25

4/23/2024

9

We need citizens
computationally
equipped to deal with
these algorithmic
systems in theory and in
practice

4/24/24 CompSci 201, Spring 2024, L28: LDOC 26

Who has gone before you? People
in CS

4/24/24 CompSci 201, Spring 2024, L28: LDOC 27

What will you do?

• Not everyone wants to be a software engineer
• Diplomat, lawyer, physician, entrepreneur,
• Musician, teacher, data scientist, …

• Not all jobs at tech companies are SWE
• UI, UX, PM, …

• Some non-tech companies have tech jobs
• Healthcare? Aerospace? Biotech? Finance? Non-profit?

NASA?

• Grad school? Research? Teaching?

4/24/24 CompSci 201, Spring 2024, L28: LDOC 28

26

27

28

4/23/2024

10

What I’m thankful for

4/24/24 CompSci 201, Spring 2024, L28: LDOC 29

• Safety to gather and be together

• My teaching team

• All of you (why am I here?!?!?)

29

	Slide 1
	Slide 2: Logistics, coming up
	Slide 3: Looking back at our semester
	Slide 4: What are algorithms?
	Slide 5: What is code?
	Slide 6: Why does efficiency matter?
	Slide 7: Some specifics you will did learn
	Slide 8: Informal goals for the course
	Slide 9: Who to Thank
	Slide 10: What I’m thankful for
	Slide 12: Parting Thoughts: What computers can and can’t do?
	Slide 13: What can computers do?
	Slide 14: What can’t computers do?
	Slide 15: Halting Problem
	Slide 16: Can we confuse doesHalt?
	Slide 17: Formal proof is a bit more challenging…
	Slide 18: Shortest/Longest Path; P and NP
	Slide 19: P vs NP
	Slide 20: P ?= NP
	Slide 21: “Easy” Hard Problems
	Slide 22: AI/ML often work with experimental algorithms for hard problems
	Slide 23: Artificial Intelligence: ChatGPT and Reinforcement Learning
	Slide 24: More Concerning? Deepfakes and Generative Adversarial Networks (GANs)
	Slide 25: What should computers do?
	Slide 26: We need citizens computationally equipped to deal with these algorithmic systems in theory and in practice
	Slide 27: Who has gone before you? People in CS
	Slide 28: What will you do?
	Slide 29: What I’m thankful for

