4/23/2024

L.28: LDOC and the
Limits of Computing

Alex Steiger
CompSci 201: Spring 2024
4/24/2024

Logistics, coming up

« Extra credit! 3 surveys for 0.5% final grade each:
« Official course evals (>70% completion)
« End-of-semester survey (individual completion)
« AiiCE survey (>70% completion)
+ Due 4/27 @ midnight

« Next week on Tuesday, 4/30
« Final exam, 9am-12pm
« Required, comprehensive

Looking back at our
semester

4/23/2024

What are algorithms?

Loosely speaking: A precise sequence of
unambiguous steps that effectively compute an
output given an input.

») Algorithm Design
F Intuitive English *‘ « Mathematical
« Logic of program
) « Problem-solving
P English ;
’7 « Language independent
Frcudteseat Implementation
’7_ 1 « Semantics and Syntax

Language dependent

’7 real machine

What is code?

In order to execute an algorithm on a real computer,
we must write the algorithm in a formal language. An
algorithm so written is a program.

In this class we explore both:

Theory Practice
+ Design an algorithm « Write a Java program
» Analyze performance - Debug/test

« Data structure
tradeoffs » Measure performance

Why does efficiency matter?

« You wrote the next big social media app:
« Willit work if it has 1 billion users?
« What about on a phone with limited memory?

« In the sciences, discovery depends on computing
with big data:
« Sequencing the human genome
« Surveying millions of images in astronomy
« Processing data logs from the CERN collider

« Pushing the limits of current technology:
« Virtual / augmented reality?
« Deep neural networks for large scale machine learning?

Some specifics you will did

learn
Data Structures Algorithms
* Arrays * lterative
« Lists: ArrayList and LinkedList + Hashing
« Sets: HashSet and TreeSet « Big O Asymptotic Analysis
* Maps: HashMap and TreeMap « Recursive
« Stacks, Queues, Priority Queues / « Sorting
Heaps

* Greedy
« Trees: Binary Search Trees + Graph
+ Graph representations
Software
« Java API « Interfaces, implementations
* Objects, Classes + Testing, Debugging

Informal goals for the course

« Make or deepen a friendship with someone else
passionate about computer science.

« Develop a new appreciation of computing
phenomena you see in the real world.

« Experience joy when your program works, even if it
took a while to get it there.

* WOTO: WOrking TOgether
« Stay safe and healthy, physically and mentally

Who to Thank

* Violet (Teaching Associate), Mark and Eamon (Grad
TAs) working behind the scenes to make this work
at scale

« All of our undergrad TAs! Providing feedback, helper
hours, running discussions, etc.

« Your fellow students! Discussion groups, friends,
project partners, etc.

4/23/2024

What I'm thankful for

« Safety to gather and be together

* My teaching team

10

Parting Thoughts:
What computers can
and can't do?

12

What can computers do?

amazo NETFLIX GO %\&:

2 / :
race 1D Y

13

4/23/2024

What can't computers do?

« Some problems cannot be solved at all
« One program detects all infinite loops

» Some problems cannot be solved efficiently
« Listing all N-bit sequences of 0's and 1's

» Some problems can be approximately solved
« Al, ML, close-to-optimal is good enough

14

Halting Problem

» Can we write doesHalt as specified? Suppose so!
« Like the Java Compiler: reads a program

4/23/2024

public class ProgramUtils
Az
* true if pr halts on input,
* otherwise returns false (infinite loop)
*/
public static boolean doesHalt (String progname) {
}

15

Can we confuse doesHalt?

« What if doesHalt (confuse) returns true?

« Then confuse () does not halt (see below)
« What if doesHalt (confuse) returns false?

« Then confuse () does halt (see below)

public static boolean confuse() {
if (ProgramUtils.doesHalt (confuse)) {
while (true) {
// do nothing forever

}

16

Formal proof is a bit more
challenging...

« Alan Turing first showed this for programs: 1936
» Had to formally specify what a program was
« Needed to invent concept of Turing Machine
« Also demonstrated by Alonzo Church

« Cantor showed # Real Numbers > # Rationals
« So-called diagonalization, 1891
« Ridiculed by establishment
« Argument essential to above

17

Shortest/Longest Path; P and NP

« Dijkstra's Algorithm one example
« Others: Floyd-Warshall and more
« Very efficient graph algorithms,

« Longest Path? No efficient solution known
« Easy to verify "is this path greater than length k"
» Exponentially many paths

18

P vs NP

« Pis the set of (algorithmic) problems that can be solved
in time that is polynomial in the size of the input
(polynomial time).

- i.e, can solve with a program that is O(1), O(N), O(Nlog(N)),
O(N?), O(N3), .., O(N'28), ...

« NP is (roughly) the set of (algorithmic) problems for
which a solution can be verified in polynomial time.

19

4/23/2024

P 2= NP

| | &
| | ‘ I‘ * Most think P I= NP

| NP-Hard | | NP-Hard

! / |

| .
|+ Greatest outstanding

- | question in theoretical
= np-Complete |/ computer science

Comprnty

« Proof is worth a $1M
prize from the Clay
By Behnam Esfahbod, CC BY-SA 30, Mathematics Institute

P = NP

20

“Easy” Hard Problems

+ Some problems are hard to solve but easy to approximate:
« Can't write a program to give you the optimal solution
efficiently but can find something within € of optimal in
polynomial time.

« Greedy, randomized, etc.

« Some problems are hard to prove things in theory but easy
to solve in practice

« Can't prove much but it works well in practice

21

Al/ML often work with
experimental algorithms for hard
problems

Commonidea: Use a
computer to learn a
function/neural network that
approximates a large
dataset.

+ Image segmentation/
classification
Face/speech recognition
Machine translation
Text generation
Reinforcement learning
Robotics

22

4/23/2024

4/23/2024

Artificial Intelligence: ChatGPT and
Reinforcement Learning

23

More Concerning? Deepfakes and
Generative Adversarial Networks
(GANs)

Generative Adversarial
Network

L]
THIS IS NOT MORGAN FREEMAN.

24

What should computers do?

& [E50 miou msner srvomes wsommec stice. surror e vt

ALGORITHNS
OPPRESSION

ity, and Civil Rights

=]

25

26

27

28

We need citizens
computationally
equipped to deal with
these algorithmic
systems in theory and in
practice

Who has gone before you? People
in CS

What will you do?

« Not everyone wants to be a software engineer

« Diplomat, lawyer, physician, entrepreneur,
» Musician, teacher, data scientist, ...

« Not all jobs at tech companies are SWE

« UL UX PM, ..

» Some non-tech companies have tech jobs

« Healthcare? Aerospace? Biotech? Finance? Non-profit?
NASA?

« Grad school? Research? Teaching?

4/23/2024

29

What I'm thankful for

« Safety to gather and be together

* My teaching team

4/23/2024

10

	Slide 1
	Slide 2: Logistics, coming up
	Slide 3: Looking back at our semester
	Slide 4: What are algorithms?
	Slide 5: What is code?
	Slide 6: Why does efficiency matter?
	Slide 7: Some specifics you will did learn
	Slide 8: Informal goals for the course
	Slide 9: Who to Thank
	Slide 10: What I’m thankful for
	Slide 12: Parting Thoughts: What computers can and can’t do?
	Slide 13: What can computers do?
	Slide 14: What can’t computers do?
	Slide 15: Halting Problem
	Slide 16: Can we confuse doesHalt?
	Slide 17: Formal proof is a bit more challenging…
	Slide 18: Shortest/Longest Path; P and NP
	Slide 19: P vs NP
	Slide 20: P ?= NP
	Slide 21: “Easy” Hard Problems
	Slide 22: AI/ML often work with experimental algorithms for hard problems
	Slide 23: Artificial Intelligence: ChatGPT and Reinforcement Learning
	Slide 24: More Concerning? Deepfakes and Generative Adversarial Networks (GANs)
	Slide 25: What should computers do?
	Slide 26: We need citizens computationally equipped to deal with these algorithmic systems in theory and in practice
	Slide 27: Who has gone before you? People in CS
	Slide 28: What will you do?
	Slide 29: What I’m thankful for

