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Current hypotheses about eukaryotic origins generally pro-
pose at least two partners in that process: a bacterial endo-
symbiont that became the mitochondrion and a host cell for 

that endosymbiosis1–4. The identity of the host has been informed 
by analyses of conserved genes for the transcription and transla-
tion machinery that are considered essential for cellular life5. 
Traditionally, the host was considered to be a eukaryote on the basis 
of ribosomal RNA trees in either unrooted6,7 or rooted form8. In 
these trees, archaea, bacteria and eukarya form three separate pri-
mary domains, with the rooted version suggesting that archaea and 
eukarya are more closely related to each other than to bacteria8. A 
criticism of these three-domains (3D) trees is that they were con-
structed using overly simple phylogenetic models5,9,10. Phylogenetic 
analyses using models that better fit features of the data10–12, cou-
pled with an expanded sampling of prokaryotic diversity13–15, have 
supported a two-domains (2D) tree consistent with the eocyte16 
hypothesis whereby the eukaryotic nuclear lineage—the host for 
the mitochondrial endosymbiont—originated from within the 
archaea (reviewed in refs. 5,17). The 2D tree has gained increasing 
traction in the field18, particularly with the discovery of the Asgard 
archaea19,20. The Asgard archaea branch together with eukaryotes 
in phylogenetic trees and their genomes encode homologues of 
eukaryotic signature proteins—proteins which underpin the defin-
ing cellular structures of eukaryotes, and which were previously 
thought7,21 to be unique to eukaryotes. However, the discoveries 
and analyses that support the 2D tree have been criticized from a 
variety of perspectives.

It has been suggested22,23 that the close relationship between 
eukaryotes and Asgard archaea in 2D trees19,20 is due to eukary-
otic contamination of Asgard metagenomes combined with phy-
logenetic artefacts caused by the choice of genes analysed and the 
inclusion of fast-evolving archaea in tree reconstructions;22–24 see 
also the comment25 and response24 to those analyses. The phenom-
enon of long-branch attraction due to the presence of fast-evolving 
sequences is a well-known artefact in phylogenetic analyses26–28. 

Indeed, it has previously been suggested that it is the 3D tree, rather 
than the 2D tree, that is an artefact of long-branch attraction5,9–11, 
both because analyses under better-fitting models have recovered 
a 2D tree but also because the 3D topology is one in which the two 
longest branches in the tree of life—the stems leading to bacteria and 
to eukaryotes—are grouped together. Nevertheless, when putative 
fast-evolving sequences were removed, Forterre and colleagues22,24 
recovered a monophyletic archaea within a 3D tree, whether ana-
lysing 35 core genes, a particular subset of six genes or RNA poly-
merases alone. Claims that the 2D tree is a product of unbalanced 
taxonomic sampling and inclusion of fast-evolving sequences have 
also been made by others29.

In a more general criticism it has been suggested30–33 that pro-
tein sequences do not harbour sufficient signal to resolve the 2D/3D 
debate due to mutational saturation (but see refs. 11,12). One suggested 
solution is to analyse conserved structural motifs (folds) in pro-
teins rather than primary sequence data31,33,34. Three-dimensional 
structures are thought to be more highly conserved than primary 
sequences. It has therefore been suggested that they should provide 
a more reliable indicator of ancient relationships, although it is not 
yet clear how best to analyse fold data for this purpose. Published 
unrooted trees based upon analyses of protein folds have recovered 
archaea, bacteria and eukaryotes as separate groups34,35, a result that 
is consistent with the 3D but not the 2D tree. Analyses of protein 
folds have recently been extended to use non-stationary models to 
infer a rooted tree of life31. In these analyses the inferred root sepa-
rated cellular life into prokaryotes (archaea plus bacteria, termed 
akaryotes) and eukaryotes31,33. This tree is incompatible with the 
idea that archaea and eukaryotes share closer common ancestry, 
and recapitulates the hypothesis36 that the deepest division in cel-
lular life is between prokaryotes and eukaryotes.

In this paper, we have evaluated the analyses and data that have 
led to conflicting hypotheses of relationships between the major 
groups of cellular life and for the position of the eukaryotic nuclear 
lineage. We have also performed phylogenomic analyses using 
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the best-available supermatrix, supertree, and coalescent methods  
on an expanded sample of genes and taxa, to further explore the 
deep structure of the tree of life and the relationship between 
archaea and eukaryotes.

Results and discussion
Analysis of core genes consistently supports two primary 
domains, not three. It has recently been argued22–24 that the 2D 
tree is an artefact of data and taxon sampling and that resolution of 
those issues provides support for a 3D tree. The molecular data at 
the core of this debate had first been used19 to support a 2D tree in 
which eukaryotes clustered within archaea as the closest relatives of 
the Asgard archaea. The original dataset19 comprised a concatena-
tion of 36 ‘universal’ genes for 104 taxa. In the initial critique, it 
was claimed that the close relationship reported19 between Asgard 
archaea and eukaryotes was caused by the inclusion in the dataset 
of a contaminated elongation factor 2 (EF2) gene for Lokiarchaeum 
sample Loki3 (ref. 22; now Heimdallarchaeota20) and by the inclusion 
of fast-evolving archaeal lineages in the analysis. However, recent 
data suggest that the EF2 gene of Heimdallarchaeota is not contam-
inated with eukaryotic sequences because similar EF2 sequences 
have been found in additional Heimdallarchaeota metagenome-
assembled genomes prepared from different environmental DNA 
samples in different laboratories20,37.

The claim22–24 that the presence of fast-evolving sequences might 
be affecting the topology recovered could be seen as a reasonable 
challenge, since long-branch attraction can influence the tree topol-
ogy recovered. A problem for this specific critique22, however, is 
that no single, clear and consistent criterion was used to identify 
the ‘fast-evolving’ sequences that were removed from the original 
dataset19 to recover the 3D tree. Long-branched archaea might result 
from either a fast evolutionary rate or a long period of time and these 
possibilities are difficult to distinguish a priori. Moreover, the his-
torical papers38,39 cited22 as providing topological evidence that some 
sequences are fast-evolving used site- and time-homogenous phy-
logenetic models (models in which the process of evolution is con-
stant over the sites of the alignment and branches of the tree) which 
often fit data poorly5. To investigate further, we ranked all of the taxa 
in the original dataset19 according to their root-to-tip distances for 
each species. This is equal to the summed branch length (expressed 
as expected number of substitutions per site) from the root of the tree 
(rooted between bacteria and archaea) to the relevant tip. We cal-
culated distributions and 95% credibility intervals (Supplementary 
Table 1) for each of these root-to-tip distances from the samples 
drawn during a Markov Chain Monte Carlo (MCMC) analysis under 
the best-fitting (see below) CAT + GTR + G4 model in PhyloBayes, 
to perform Bayesian relative rates tests (Supplementary Table 1). 
The 23 taxa previously identified as fast-evolving sequences are not 
the 23 taxa with the longest root-to-tip distances. Meanwhile some 
of the taxa chosen for exclusion (Parvarchaeum, Micrarchaeum, 
Nanoarchaeum Nst1, Nanosalinarum and Korarchaeum) are indeed 
relatively long-branching, others (Iainarchaeum, Nanoarchaeum 
G17 and Aenigmaarchaeon) are in the bottom half of the branch 
length distribution and many of the longest-branching archaea 
(including the Thaumarchaeota) were retained. Nevertheless, 
analysis22 of the reduced dataset did recover a 3D tree, raising the 
question of why this result was obtained. In the following analyses 
we have followed the recent renaming20 of the three ‘Loki’ metage-
nome-assembled genomes originally analysed as Lokiarchaeum sp.  
GC14_75 (formerly Loki1), Heimdallarchaeota archaeon LC_2 
(Loki2) and Heimdallarchaeota archaeon LC_3 (Loki3).

The published 3D tree22 was recovered from the 35-gene concat-
enated dataset under the LG + G4 + F model40 in PhyML 3.1 (ref. 41), 
with moderate support (76% bootstrap) for monophyletic archaea 
(fig. 5b in ref. 22). In repeating this analysis, we noted that although 
PhyML returned a 3D tree, analysis of the same alignment under the 

same substitution model (LG + G4 + F) with IQ-Tree 1.6.2 (ref. 42)  
and RAxML 8.2.4 (ref. 43), two other maximum-likelihood phylog-
eny packages, instead yielded a 2D tree where Heimdallarchaeota 
and Lokiarchaeum were together the sister group to eukaryotes, with 
a better likelihood score (Supplementary Fig. 1 and Supplementary 
Table 2). To investigate further, we computed the log likelihoods of 
the 2D and 3D trees in all three packages, keeping the alignment 
and model constant (Supplementary Table 2). All three implemen-
tations accord the 2D tree a higher likelihood than the 3D tree  
(lnl approximately equal to −684701.2, compared to −684716.1 for 
the 3D tree). It thus appears that the recovery of a 3D tree reflects 
a failure of PhyML to find the more likely 2D tree, rather than to 
the removal of problematic sequences. The differences between the 
likelihoods are not significant according to an approximately unbi-
ased test (AU = 0.229 for the 3D tree, 0.771 for the 2D), meaning 
that analysis of the 35-gene dataset under LG + G4 + F is equivocal 
with respect to the 2D and 3D trees; contrary to previous claims22, 
analysis of the 35-gene concatenation under the LG + G4 + F model 
provides no unambiguous evidence to prefer the 3D tree.

A number of newer models accommodate particular features 
of empirical data better than the LG + G4 + F, so we investigated 
which trees were produced from the 35-gene dataset using these 
models. We addressed three issues in particular: among-site com-
positional heterogeneity due to site-specific biochemical con-
straints44, changing composition in different lineages over time45, 
and variations in site- and lineage-specific evolutionary rates (het-
erotachous evolution)46.

The CAT + GTR + G4 model44,47 is an extension to the standard 
GTR model that allows compositions to vary across sites. Analysis 
of the 35-gene dataset using this model produced a 2D tree where 
eukaryotes group with Heimdallarchaeota and Lokiarchaeum with 
maximal support (Fig. 1). It was previously reported22 that con-
vergence in Bayesian analyses is a problem for this dataset using 
the CAT + GTR + G4 (ref. 22) model. In our analyses, we achieved 
good convergence between chains as assessed both by compari-
son of split frequencies and, for the continuous parameters of the 
model, means and effective sample sizes (Supplementary Table 4). 
As an additional check, we also carried out maximum-likelihood 
analyses using the LG + C60 + G4 + F model, which improves on 
the LG + G4 + F model by modelling site-specific compositional 
heterogeneity using a mixture of 60 composition categories. This 
model fits the data much better than the LG + G4 + F according to 
the Bayesian Information Criterion (BIC; Supplementary Table 3) 
and, like CAT + GTR + G4, it recovered a 2D tree with high boot-
strap support (Supplementary Fig. 1c). The 3D tree (AU = 0.036) 
could also be rejected at P < 0.05 using an AU test, based on the 
LG + C60 + G4 + F model and the 35-gene alignment.

Bayesian posterior predictive simulations48 provide a tool for 
evaluating the adequacy of models, by testing whether data simu-
lated under a model is similar to the empirical data. Figure 2 plots 
the 2D tree (inferred under CAT + GTR + G4) and the 3D tree 
(inferred under LG + G4 + F in PhyML) on the same scale (Fig. 2a),  
revealing that—from the same alignment—CAT + GTR + G4 infers 
that many more substitutions have occurred in the core gene set 
during the evolutionary history of life. Model fit tests (Fig. 2b and 
Supplementary Table 4) indicate that LG + G4 + F provided a much 
poorer fit to the data (larger Z-scores) than CAT + GTR + G4 in 
terms of across-site compositional heterogeneity (Z = 64.2 for 
LG + G4 + F and Z = 6.9 for CAT + GTR + G4) and therefore sys-
tematically under-estimated the probability of convergent substitu-
tions (Z = 19.7 for LG + G4 + F and Z = 7.62 for CAT + GTR + G4). 
These differences arise because LG + G4 + F assumes that amino 
acid frequencies are the same at all sites, whereas in empirical data-
sets different sites have different compositions, arising from distinct 
biochemical and selective constraints. Since this means the effec-
tive number of amino acids per site is in reality lower than that  
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predicted by LG + G4 + F, the probability of parallel conver-
gence to the same amino acid in independent lineages is higher 
(Supplementary Table 5). CAT + GTR + G4 accounts for this 
across-site variation by incorporating site-specific compositions 
and is therefore less prone to underestimating rates of convergent 
substitution. This is important because the longest branches in both 
the 2D and 3D trees are the lineages leading to the bacteria and 
eukaryotes. The lesser ability of LG + G4 + F to detect convergent 
substitutions along these branches may favour inference of a 3D 
tree. While CAT + GTR + G4 provides a better fit than LG + G4 + F, 
neither model completely fits the composition of the data (P = 0 
for all tests; Supplementary Table 5). As a further data exploration 
step, we recoded49 the amino acid alignment into four categories 
of biochemically similar amino acids (AGNPST, CHWY, DEKQR 
and FILMV). Recoding has been shown to ameliorate sequence 
saturation and compositional heterogeneity49,50 and in this case 
it improved model fit (as judged by the magnitude of Z-scores; 
Supplementary Table 5). Analysis of this SR4-recoded align-
ment under CAT + GTR + G4 recovered a 2D tree where eukary-
otes grouped with the Heimdallarchaeota (posterior probability, 
PP = 0.98; Supplementary Fig. 2).

Variation in sequence composition across the branches of the tree 
is also a pervasive feature of data that has been used to investigate 
the tree of life10,11. We tested each of the genes in the 35-gene dataset 
(see Methods) and found that 23/35 showed significant evidence 
of across-branch heterogeneity at P < 0.05 (Supplementary Table 6). 
Analysis of the concatenation of the 12 composition-homogeneous 
genes under CAT + GTR + G4 gave a 2D tree with maximal pos-
terior support (PP = 1; Supplementary Fig. 3), as did a partitioned 
analysis using the best-fitting homogeneous model for each of the 
12 gene partitions (LG + G4 + F in all cases; Supplementary Fig. 3;  
PP = 1). We also inferred a phylogeny from the entire 35-gene 
dataset under the branch-heterogeneous node-discrete composi-
tional heterogeneity (NDCH)2 model, which explicitly incorpo-
rates changing sequence compositions across the tree. NDCH2 is 
an extension of the NDCH model45; it has a separate composition 
vector for each tree node and is constrained via a sampled concen-
tration parameter of a Dirichlet prior. Thus, the model adjusts to the 
level of across-branch compositional heterogeneity in the data dur-
ing the MCMC analysis. For reasons of computational tractability,  
this analysis could only be run on the SR4-recoded version of the 
35-gene alignment. NDCH2 obtained adequate model fit with 
respect to across-branch compositional heterogeneity (P = 0.7838) 
and recovered a 2D tree with Heimdallarchaeota as the sister group 
to eukaryotes (PP = 0.85; Supplementary Fig. 2).

A failure to account for heterotachy or rates of molecular evolu-
tion that are both site- and branch-specific, has been posited as a 
potential issue for phylogenomic analyses of ancient core genes51,52. 
We used the GHOST53 model of IQ-Tree to analyse the 35-gene 
alignment. GHOST is an edge-unlinked mixture model in which 
the sites of the alignment evolve along a shared tree topology but are 
fit by a finite mixture of GTR exchangeabilities, sequence composi-
tions and branch lengths. We fit a four-component mixture model to 

both the original amino acid alignment (LG + G4 + F components) 
and the SR4-recoded version (GTR + F components). The result-
ing trees were a weakly supported (amino acids; 58% bootstrap  
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Fig. 1 | The 35-gene matrix of Da Cunha et al.22 favours a 2D tree using the 
best-fitting models in both maximum-likelihood and Bayesian analyses. 
Note the eukaryotes (green) group with the sampled Asgard archaea 
(pink) with maximum posterior support. Bacteria are in grey, TACK archaea 
in orange, Euryarchaeota in purple. This is a consensus tree inferred 
under the CAT + GTR + G4 model in PhyloBayes-MPI; branch lengths are 
proportional to the expected number of substitutions per site, as indicated 
by the scale bar. A 2D topology was obtained under a variety of other 
models in maximum-likelihood analyses (LG + G4 + F, LG + PMSF + G4, 
LG + C60 + G4 + F; Supplementary Fig. 1) and also with four-state 
Susko–Roger recoding under the CAT + GTR + G4 and NDCH2 models 
(Supplementary Fig. 2).
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Fig. 2 | Evidence that the 3D tree is an artefact of long-branch attraction. a, Da Cunha et al.22 analysed a dataset of 35 core protein-coding genes under 
the LG + G4 + F model and obtained a 3D tree; the better-fitting (Supplementary Table 4) CAT + GTR + G4 model recovers a 2D tree. b, Posterior predictive 
tests indicate that CAT + GTR + G4 performs significantly better than LG + G4 + F in capturing the site-specific evolutionary constraints reflected by lower 
biochemical diversity approaching that of the empirical data. This results in more realistic estimates of substitutional saturation and convergence found in 
the data. The longest branches on both the 3D and 2D trees in a are the stems leading to the bacteria and eukaryotes (in yellow and green, respectively). 
CAT + GTR + G4 identifies many more convergent substitutions on these branches than does LG + G4 + F, as can be seen by comparing the branch lengths 
in a. This failure to detect convergent substitutions under LG + G4 + F has the effect of drawing the bacterial and eukaryotic branches together because 
convergences are mistaken for homologies (synapomorphies), resulting in a 3D tree. Bootstrap support (a) and Bayesian posterior probability (b) are 
indicated for the key nodes defining the 3D and 2D trees. Asgard refers to a clade of Heimdallarchaeota and Lokiarchaeum. Plotting these trees to the same 
scale (in terms of substitutions per site) illustrates major differences in these analyses. The 3D/LG + G4 + F analysis suggests that, on average, 30.77 
changes have taken place per site; the 2D/CAT + GTR + G4 analysis suggests that 47.4 changes per site have occurred. This difference amounts to ~128,511 
additional substitutions in total inferred under the CAT + GTR + G4 model.
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support for eukaryotes plus Heimdallarchaeota and Lokiarchaeum) 
or strongly supported (recoded data; 95% bootstrap support for 
eukaryotes and Heimdallarchaeota) 2D tree (Supplementary Fig. 5).

In summary, all of our analyses of the 35-gene alignment 
using better models recovered a 2D tree in which eukaryotes are 
either the sister group of Heimdallarchaeota and Lokiarchaeum or 
Heimdallarchaeota alone, rather than the 3D tree which the data 
has previously been claimed22 to support.

Do some core genes have different histories? Based upon AU tests 
under the LG + G4 + F model for individual genes in the 35-gene 
dataset, it was suggested22 that the 35-gene dataset contains two 
subsets of genes with different evolutionary histories: a larger set 
supporting the 2D tree and a smaller set supporting the 3D tree. We 
used the better-fitting CAT + GTR + G4 model to analyse a concate-
nated dataset of the six genes that significantly favoured the 3D tree 
under LG + G4 + F and we also analysed a four-state recoded version 
of the same alignment. Analysis of the original amino acids recov-
ered a moderately supported 3D tree, while analysis of the recoded 
alignment recovered a weakly supported 2D tree (Supplementary 
Fig. 4); posterior predictive simulations indicated that model fit was 
improved by SR4 recoding (Supplementary Table 7), suggesting that 
support for the 3D tree from these six genes under LG + G4 + F may 
be due to model misspecification.

It has also been suggested that phylogenetic analyses of RNA poly-
merase subunits22 provide robust support for a 3D tree. By contrast, 
other11 analyses of RNA polymerase subunits have already suggested 
that better-fitting models prefer a 2D tree. We evaluated the fit of 
both models, LG + G4 + F and CAT + GTR + G4, used22 to recover a 
3D tree from RNA polymerase subunits, using posterior predictive 
simulations (Supplementary Discussion) and found that both mod-
els provide an inadequate fit to the data (Supplementary Table 8).  
Model fit was improved following SR4 recoding (Supplementary 
Table 8) and this analysis recovered a weakly supported and poorly 
resolved 2D tree (Supplementary Fig. 6).

Expanded gene and taxon sampling supports a clade of eukary-
otes and Asgard archaea. We took advantage of the recent dra-
matic improvements in genomic and transcriptomic sampling of 
free-living bacteria, archaea and microbial eukaryotes to assemble a 
dataset of 125 species, including 53 eukaryotes, 39 archaea (includ-
ing an expanded set of Asgard metagenome-assembled genomes20 
representing two new groups, Odinarchaeota and Thorarchaeota) 
and 33 bacteria, on the principle that improved sampling can some-
times help to resolve difficult phylogenetic problems54,55. We used 
free-living representatives of eukaryotic groups to avoid the well-
documented problems for tree reconstruction caused by sequences 
from parasitic eukaryotes26. Our sampling of archaea and bacteria 
was also expanded to include representatives from the large number 
of uncultivated lineages that have recently been identified by single 
cell-genomics and metagenomics15,56,57.

To further investigate the claim22 that the tree inferred depends 
on the choice of universal marker genes, we used the Orthologous 
MAtrix (OMA58) algorithm to identify single-copy orthologues 

de novo on the 125 genome set. Benchmarks59 indicate that OMA 
is conservative, in that it returns a relatively low number of ortho-
logues but that these orthologues perform better than other meth-
ods at recovering the species tree. Combining OMA analysis with 
manual filtering to remove EF2 and genes of endosymbiotic origin 
(see Methods), we identified 21 broadly conserved marker genes 
found in at least half of our set of bacteria, archaea and eukaryotes, 
and 43 genes encoded by at least half of the archaea and eukary-
otes (see Methods). We concatenated the 21 genes conserved in all 
three domains and inferred a tree under CAT + GTR + G4 (Fig. 3a). 
Rooting on the branch separating bacteria and archaea resulted in 
a 2D tree, in which eukaryotes form a maximally supported clade 
with Asgard archaea (Fig. 3a); within Asgards, the closest relatives 
of eukaryotes was recovered as the Heimdallarchaeota, although 
with only modest support (PP = 0.79).

We next analysed the expanded set of genes conserved between 
archaea and eukaryotes, placing the root outside the TACK/
Asgard/eukaryote clade as suggested by the previous analysis 
including bacteria. The consensus tree under CAT + GTR + G4 
(Fig. 3b) resolves a clade of eukaryotes and Heimdallarchaeota with 
maximal posterior support; within that clade, eukaryotes group 
with one Heimdallarchaeota metagenome bin (LC3) with high 
(PP = 0.95) support.

Given ongoing debates about the impact of even single genes 
within concatenated datasets, we investigated in detail the over-
lap between the 35-gene set, the 21 genes selected by OMA and a 
29-gene set used in some previous analyses10,11,14,60,61 (Supplementary 
Table 10). After removing EF2, seven genes are found in all three 
sets; 27 in at least two of the three and 50 genes in total are pres-
ent in at least one of the datasets. We obtained the orthologues 
for the 50-gene families from the 125 species dataset and inferred 
trees using the best-fit maximum-likelihood model in IQ-Tree on 
the 7-, 27- and 50-gene concatenations (Supplementary Fig. 8). 
We also expanded species sampling for the 35 genes to compare 
with the analyses described above. Analysis under the best-fitting 
maximum-likelihood model for all four concatenates resulted in 
a 2D tree, with either all Asgards (the 7- and 35-gene datasets) or 
Heimdallarchaeota (27- and 50-gene datasets) as sister to eukary-
otes with moderate (7-gene set) to high (the other sets) bootstrap 
support. These results indicate that there is a congruent signal for a 
2D tree, and a relationship between eukaryotes and Asgard archaea, 
that is robust to moderate differences in the choice of marker genes. 
The results of all our concatenation analyses are summarized in 
Supplementary Table 11.

Supertree and multispecies coalescent methods support the 2D 
tree. Concatenation allows phylogenetic signal to be pooled and 
permits the use of complex, parameter-rich substitution models but 
its assumptions are problematic in the context of microbial evolu-
tion. In particular, concatenation requires that all of the genes share 
a common phylogeny62,63, an assumption that is difficult to test 
because trees inferred from individual genes are often poorly sup-
ported. Some incongruence between single-gene trees can be attrib-
uted to stochastic error or model misspecification14 but genuinely 

Fig. 3 | An expanded sampling of microbial diversity supports a 2D tree. a, Bayesian phylogeny of 21 concatenated proteins conserved across bacteria, 
archaea and eukaryotes under the CAT + GTR + G4 model, rooted on the branch separating bacteria and archaea. Eukaryotes group with Asgard archaea 
with maximum posterior support. b, Bayesian phylogeny of 43 genes conserved between archaea and eukaryotes under CAT + GTR + G4. Eukaryotes 
group with, or within, Heimdallarchaeota. All support values are Bayesian posterior probabilities and branch lengths are proportional to the expected 
number of substitutions per site, as indicated by the scale bars. The Euryarchaeota are paraphyletic in the consensus tree in a, consistent with some 
recent analyses using bacterial outgroups11,12, although the relevant support values are low and the analysis does not robustly exclude the alternative 
hypothesis91 of a monophyletic Euryarchaeota. The tree in b is formally unrooted because it does not include a bacterial outgroup. On the basis of a and 
published analyses12,91, the root may lie between the Euryarchaeota and the other taxa, or within the Euryarchaeota. Amino acid data were recoded using 
the four-state scheme of Susko and Roger, which our posterior predictive simulations (Supplementary Table 7) suggest improved model fit by ameliorating 
substitutional saturation and compositional heterogeneity; phylogenies inferred on the original amino acid data are provided in Supplementary Fig. 7.
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different evolutionary histories for different genes can arise from 
incomplete lineage sorting, gene duplication and loss and horizon-
tal gene transfer. We therefore investigated alternative methods 

for integrating phylogenetic signal from multigene datasets that 
account for gene tree incongruence in different ways. The proba-
bilistic supertree method of Steel and Rodrigo (SR2008)64 and the 
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split presence–absence (SPA) method65, are supertree methods that 
model differences between gene trees as stochastic noise; ASTRAL 
is a supertree method that is consistent under the multispecies 
coalescent66. These methods have their own assumptions and limi-
tations63 but these are distinct from—and provide a useful contrast 
to—concatenation. As these methods do not require genes to be 
broadly conserved across the species of interest, we analysed a set 
of 3,199 single-copy orthologues found in at least four of the taxa in 
our dataset (of these 3,199 gene families, 479 included at least one 
archaeon and one eukaryote; see Supplementary Table 12 for the 
taxonomic distribution and phylogenetic relationships supported 
by the individual trees).

All of these analyses resolved a 2D tree including a clade of 
eukaryotes and Asgard archaea with high to maximal support 
(Supplementary Figs. 9–10). Supertrees inferred under the SPA 
method and ASTRAL placed eukaryotes within the Asgard archaea 
as the sister lineage to the three Heimdallarchaeota metagenome 
bins (Supplementary Figs. 9–10), while the SR2008 supertree recov-
ered eukaryotes and Asgard archaea as monophyletic sister lineages 
(Supplementary Fig. 10). To compare these supertrees indepen-
dently of their models and assumptions, we calculated the summed 
quartet distances between the set of input trees and each supertree: 
the total number of quartets (subtrees of four leaves) that differ 
between the input trees and each supertree (Table 1). The tree with 
the best score by this metric was the model-based MSC ASTRAL 
analysis which, like the SPA supertree, recovered Heimdallarchaeota 
and eukaryotes as sister taxa. These results suggest that there is a 
congruent genome-wide signal for a specific relationship between 
eukaryotes and the Heimdallarchaeota, and that the 2D tree does 
not appear to be an artefact of concatenation.

Is there support from protein folds for a root between prokaryotes 
and eukaryotes? Debates about the 2D and 3D trees have typically 
assumed that the root of the tree lies on the branch separating bacteria 
and archaea67–69 or within the bacteria70–72. Recently, a non-stationary 
model of binary character evolution (the KVR73 model) was used31,33 
to infer a rooted tree of life from a matrix of protein fold presence–
absence data. Fold presence and absence were quantified by search-
ing Hidden Markov Models (HMMs) corresponding to structural 
classification of proteins families against a set of bacterial, archaeal 
and eukaryotic genomes. The inferred trees are intrinsically rooted 
because the model is non-stationary: in this model there is one com-
position (probability of protein fold presence) at the root of the tree 
and a second composition elsewhere. These analyses recovered a root 
between prokaryotes and eukaryotes31,33, suggesting this is the primary 
division within cellular life and rejecting both the 2D and 3D trees.

We performed simulations to evaluate the ability of the KVR 
model to recover the root of the tree from protein fold datasets. 
When data were simulated under the KVR model, the method 

recovered the true root of the simulation tree as might be expected. 
However, when protein fold compositions were allowed to vary 
over the tree, something which is observed in the empirical data31,33, 
the model fails to find the true root. Under these conditions, KVR 
finds a root on one of the branches with atypical sequence com-
position (see Supplementary Discussion). In the empirical data 
matrix, the eukaryotes encode significantly more protein folds 
than either bacteria or archaea (median of 871 folds per eukaryotic 
genome, compared to 521 for archaea and 615 for bacteria; P < 10–8 
for the eukaryote–archaea and eukaryote–bacteria comparisons, 
P = 0.000278 comparing bacteria and archaea; n = 47 eukaryotes, 
47 bacteria and 47 archaea, Wilcoxon rank-sum tests) but their 
higher compositions are in the minority because the matrix con-
tains an equal number of genomes from each of the three domains. 
Thus, the inferred root between prokaryotes and eukaryotes may 
result from the model’s bias in placing the root on a branch with 
atypical composition; in simulations, the root inference can be con-
trolled by varying which composition among tips—high or low—is 
in the majority (Supplementary Discussion). These results agree 
with recent work72,74 in suggesting that non-reversible models may 
provide reliable rooting information when the assumptions of the 
model are met but that root inferences are sensitive to model mis-
specification. The KVR model is only one of the many possible non-
stationary and non-homogeneous models and does not appear to 
be well-suited to these data. Models that better describe the process 
by which fold (or sequence) compositions change through time and 
across the tree—or indeed those that make use of other sources of 
time information75,76—may perform better for rooting deep phylog-
enies. How best to root ancient radiations remains an open question 
and method development is still at an early stage. A key challenge 
will be the development of methods that account for the heteroge-
neity of the evolutionary process across the data and through evolu-
tionary time (across the branches of the tree).

A potentially bigger problem than model misspecification for 
the published analyses31,33 is their assumption that the entire pro-
tein fold set evolves on a single underlying tree. This assumption 
is unlikely to be realistic because of the different histories gener-
ated by widespread horizontal gene transfer and, in eukaryotes, 
by endosymbiotic gene transfer from the bacterial progenitors of 
mitochondria and plastids77. The assumption of a single underlying 
tree to explain fold distributions also means that, despite claims to 
the contrary31, the published analyses cannot be used to reject the 
2D tree because, as generally formulated5,16,78, it seeks to explain the 
inheritance of only a subset of the genes on cellular genomes.

To evaluate whether the protein folds in the published matrix31,33 
share a common evolutionary tree, we inferred single-gene phylog-
enies for each fold (Supplementary Discussion). Although weakly 
supported, these trees are consistent with there being extensive 
disagreement between single fold-based topologies: only 22 of the 
protein folds supported the monophyly of eukaryotes and none 
recovered all three domains as potentially monophyletic groups, 
even though this was the consensus topology obtained from analy-
sis of the complete matrix. The trees contained signals for sister-
group relationships between eukaryotes and alphaproteobacteria 
(the most frequent sister group among the protein folds shared 
between eukaryotes and bacteria) and for a relationship between 
eukaryotes and the TACKL archaea. These analyses are consistent 
with endosymbiotic theory2,79 and the ideas that underpin the 2D 
tree, namely that eukaryotes contain a mixture of genes from the 
archaeal host cell and the bacterial endosymbiont that became the 
mitochondrion2,3,5 (Supplementary Discussion).

Conclusions
Identifying the tree that best depicts the relationships between 
the major groups of life is important for understanding eukary-
otic origins and the evolution of the complexity that distinguishes 

Table 1 | Summed quartet distances between the supertrees 
produced by several methods and the set of 3,199 input trees

Supertree method Summed 
quartet 
distance

Asgard–eukaryote relationship

SR2008 17287838 Sister groups

MSC (ASTRAL) 17145892 Eukaryotes with 
Heimdallarchaeota (0.28 
quadripartition support)

SPA 17195042 Eukaryotes with 
Heimdallarchaeota (PP = 1)

All trees recover a clade of eukaryotes and Asgard archaea; in addition, the SPA and ASTRAL trees 
place eukaryotes within Asgard archaea, as the sister group to the Heimdallarchaeota. The MSC 
ASTRAL tree had the lowest summed quartet distance to the input gene trees (denoted in bold text).
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eukaryotic cells. It has recently been asserted that the tree recovered 
depends upon the species investigated and the choice and quality 
of the molecular data analysed22,23. In the present study we have 
investigated the datasets used to underpin these claims and find no 
compelling evidence to support them. Analyses using better-fitting 
phylogenetic models consistently recovered a 2D tree5,10,12,16,17,19,20 
wherein eukaryotes are most closely related to members of the 
recently discovered Asgard archaea. These results are also supported 
by additional analyses of expanded concatenations and increased 
species sampling, and from large-scale genome-wide datasets anal-
ysed using supertree and coalescence methods.

We also investigated support from analyses of whole-genome 
protein folds for a rooted universal tree in which the deepest divi-
sion is between prokaryotes and eukaryotes. Taken at face-value 
this tree would reject the 2D and 3D trees that are the focus of 
robust discussion in the current literature24,25. However, while pro-
tein structure is a useful guide to identifying homology when pri-
mary sequence similarity is weak, how best to analyse fold data to 
resolve deep phylogenetic relationships is still not clear. Published 
analyses31 do not account for the varied evolutionary histories of 
individual folds due to endosymbiosis and gene transfer, and our 
simulations suggest that root inference under existing models is 
unreliable and affected by variation in the abundance and distribu-
tion of folds across genomes. At present, the best-supported root is 
on the branch separating bacteria and archaea67,68,80,81 or among the 
bacteria70,72, and the hypothesis that eukaryotes are younger than 
prokaryotes is supported by a range of phylogenetic, cell biological2,3 
and palaeontological61,82–84 evidence.

Our analyses and published trees5,10,20 imply that the eukaryotic 
nuclear lineage evolved from within the archaea. They provide 
robust phylogenomic support for a clade of eukaryotes and Asgard 
archaea, and identify the Heimdallarchaeota as the best candidate 
among sampled lineages19,20,85 for a sister group to eukaryotes. This 
sister-group relationship will no doubt change with further sam-
pling of the potentially vast archaeal diversity in nature still to be 
discovered. The prize will be ever more reliable inferences of the 
features that were in place in the last common ancestor of both 
groups and an improved evidence-based understanding of the 
building blocks that underpinned the transition from prokaryotic 
to eukaryotic cells.

Methods
Sequences and alignment. For the reanalyses of the Da Cunha et al. and Spang 
et al. datasets, alignments were obtained from the supplementary material of Da 
Cunha et al.22 and the EF2 gene removed according to the coordinates provided; 
the alignments from Spang et al.19 were generously provided by the authors. OMA 
2.1.1 (ref. 58) was used to identify putative single-copy orthologues among a dataset 
of 92 eukaryotic, archaeal and bacterial genomes. For putative orthologues present 
in at least half of the sampled species, single-gene trees were inferred for each 
candidate under the LG + G4 + F model in IQ-Tree and the trees were manually 
inspected to filter out eukaryotic genes that were acquired from the mitochondrial 
or plastid endosymbionts. We also performed a BLASTP screen to identify 
organellar genes that might have been missed via the tree inspection approach. This 
procedure resulted in a set of 43 single-copy orthologues shared between archaea 
and eukaryotes and 21 genes shared among all three domains, that were used for 
concatenation-based phylogenomic analyses. For all OMA gene families found 
in at least four species, we used a BLASTP-based screen to identify and filter out 
eukaryotic gene families of bacterial origin, resulting in 3,261 gene families in four 
or more species that are either eukaryote-specific inventions or shared between 
eukaryotes and archaea. For the comparisons of core gene sets, an iterative process 
of manual comparisons, similarity searches and tree building was used to identify 
common and distinct markers in the published sets, identify seed sequences for 
each marker in the genomes of Dictyostelium discoideum, Sulfolobus solfataricus 
and Escherichia coli strain K12, and build HMMs for each marker using the 
existing datasets. We used domain-specific HMM searches in HMMER3 (ref. 86) 
followed by the reciprocal best-hit criterion against our domain-specific reference 
genomes to identify candidate orthologues, followed by gene tree inference and 
manual curation to assemble final marker sets. Sequences were aligned using 
the L-INS-i mode in Mafft 7 (ref. 87) and poorly aligning regions identified and 
removed using the BLOSUM30 model in BMGE 1.12 (ref. 88).

Phylogenetics. Maximum-likelihood analyses were performed using IQ-Tree 
1.6.2 (ref. 42) and bootstrap supports were computed using UFBoot2 (ref. 89), 
except where indicated in the main text. Model fitting was carried out using the 
MFP mode in IQ-Tree, adding the empirical site profile models (C20–C60) to 
the default candidate model set. Bayesian phylogenies were inferred under the 
CAT + GTR + G4 model in PhyloBayes-MPI 1.8 (ref. 47), using the bpcomp and 
tracecomp programmes to monitor convergence of two MCMC chains for each 
analysis. Posterior predictive simulations were performed using readpb_mpi in 
PhyloBayes. Tests for across-branch compositional heterogeneity were performed in 
p4 (ref. 62): we inferred maximum-likelihood gene trees for each of the 35 genes in 
the concatenation, then simulated data for each gene under the LG + G4 + F model. 
A Chi-square statistic reflecting compositional heterogeneity was calculated on the 
original and simulated datasets and the values from the simulated data were used as 
a null distribution with which to evaluate the test statistic from the original data.

Supertrees. Supertrees were inferred from the maximum-likelihood phylogenies 
for each single gene, with substitution models chosen as described above. MRP, 
SR2008 and SPA supertrees were inferred using p4 (ref. 65). Multispecies coalescent 
trees were inferred using ASTRAL-III (ref. 66).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data associated with our analyses are available in the FigShare repository90 at 
https://doi.org/10.6084/m9.figshare.8950859.v2.
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