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Recent developments in deep learning have resulted in code-generation models that produce source code

from natural language and code-based prompts with high accuracy. This is likely to have profound effects

in the classroom, where novices learning to code can now use free tools to automatically suggest solutions

to programming exercises and assignments. However, little is currently known about how novices interact

with these tools in practice. We present the first study that observes students at the introductory level using

one such code auto-generating tool, Github Copilot, on a typical introductory programming (CS1) assign-

ment. Through observations and interviews we explore student perceptions of the benefits and pitfalls of this

technology for learning, present new observed interaction patterns, and discuss cognitive and metacognitive

difficulties faced by students. We consider design implications of these findings, specifically in terms of how

tools like Copilot can better support and scaffold the novice programming experience.
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1 INTRODUCTION

Introductory programming courses typically require students to write many small programs [4].
Teachers design programming exercises to facilitate and improve student learning; however,
students are not always appropriately oriented to their learning, often focusing on completing
tasks as quickly as possible. Therefore, in the context of these programming exercises, teachers
and students often have competing user needs. These differing needs converge when students
find themselves stuck and unable to complete the tasks required. There is plenty of evidence that
students struggle to develop effective plans [97] and to implement plans that are developed [32, 52].
This is a frustrating experience for students [12] that can limit their learning progress, and may
result in undesirable behaviors such as copying [48]. To maintain progress and positive learning
experiences, an outcome desirable for both teachers and students, there is a need to support
students who are stuck [73].

Unfortunately, teachers are not always available to provide this support. Static learning re-
sources such as tutorials, guides, textbooks, and tools such as IDEs do not provide contextualized
interactive support. There have been numerous attempts to provide more contextualized help to
students learning to program, although effective programming support remains a challenge [53].
Intelligent tutoring systems [29] provide adaptive feedback to students depending on their
performance, but such systems typically guide students through pre-constructed tasks and do not
support student learning in more general (in-the-wild) environments. More recently, automated
hint generation systems have been employed to generate hints for any programming exercises [71].
Although such systems do not require the feedback on tasks to be manually designed, they do
need to be deployed in environments that have access to historical student performance data
to determine which approaches are more successful for a given exercise [68], which limits their
utility [53].
In this article, we explore how students used an LLM tool when engaged in a programming

task, from a teaching and learning perspective. We study the use of GitHub Copilot—an IDE plugin
powered by the LLMCodex. Copilot is easily accessible to novices, is free for students, and operates
as a plug-in directly in popular development environments. Existing work has not explored how
students interact with LLM-based tools to support their progress in programming education. This
article extends knowledge in this field by presenting the first study that observes students at the
first-year university level using Copilot on a typical assignment in an introductory programming
course (often generically called “CS1” [13]). In particular, we were interested in capturing the novel
experience of interacting with a new tool for the first time. We triangulate observations of novice
programmers with interviews that explore their perceptions of the benefits and dangers of this
technology for learning.
We find that most students perceived that Copilot would help them write code faster, while also

expressing concerns about not understanding the auto-generated code and becoming reliant on the
tools—concerns also held by educators [25, 42]. Prior work has demonstrated that student learning
is impacted by both cognitive [37], and meta-cognitive processes (such as explicitly monitoring
their own progress and reflecting on the effectiveness of their problem solving strategies) [65]. We
observed two new interaction patterns. The first was when students guided Copilot by utilizing
its auto-generated code prompts, shepherding it toward a solution instead of focusing on writing
code from scratch and integrating Copilot’s suggestions. The secondwaswhen some students were
moved along by some of Copilot’s incorrect suggestions, drifting from one to the next and therefore
becoming lost. We also observed that students struggled with both cognitive and metacognitive
difficulties when using the tool. Finally, we present ethical considerations and design guidelines
based on these insights.
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Fig. 1. Copilot suggesting code to a programmer. Several videos are available at github.com/features/copilot.

1.1 Background

In 2021, OpenAI released Codex [25], a version of GPT-3 trained on billions of lines of Python
code from public GitHub repositories [108]. Codex is conversant in both natural and programming
languages. It is most proficient in English and Python but can also work in other natural languages
such as Spanish and programming languages includingGo, JavaScript, Perl, PHP, Ruby, Shell, Swift,
and TypeScript [108].

GitHub Copilot uses Codex to suggest code in real-time based on code that has been entered by
the user [45]. Copilot was moved out of technical preview in June 2022 and is now available for
free to students as a plug-in for IDEs such as Visual Studio Code and JetBrains. Copilot is billed
as “Your AI pair programmer” [45]—an intentional reference to pair programming, a well-known
software engineering practice [9] that is also used in programming education [75]. Figure 1 shows
Copilot in action suggesting code to the programmer as it is being written.
In this study we focus on Copilot, however, there are several other AI code generators available

(further discussed in Section 2.1.1). Our work focuses on analyzing how novice programmers use
Copilot and learning about novice programmers’ experiences with Copilot through interviews.

1.2 Research Questions & Contributions

Our research questions are:

RQ1: How do novices interact with GitHub Copilot when they first encounter it?
RQ2: How do novices perceive their first-time experience of using GitHub Copilot?

The novel contributions of this work are:

(1) We present the first exploration of Copilot use by novices in an undergraduate introductory
programming course on a typical learning assignment. We also contribute the first inter-
views with novices about their initial experiences using Copilot—having never used it (or
tools like it) before — to understand both the benefits they perceive as well as their concerns
about such tools. While there is some prior work on Copilot’s capabilities to solve program-
ming problems at the novice level [42], there has been no work on the tool’s usability for
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novices, nor their perceptions of it. Furthermore, it is likely that capturing these reactions
will not be possible in the future as having an entire class, all of whom have never been
exposed to AI code generators, will be unlikely.

(2) We contribute new interaction patterns for using LLM-based code generation tools: drifting
and shepherding. These complement and expand upon existing LLM interaction patterns
from the literature, such as exploration and acceleration identified by Barke et al. [8], the
“wrestling” that Bird et al. [16] observed in professional developers using Copilot for the first
time, as well as aligning with some of the observations made by Vaithilingam et al. [103].

(3) We discuss four design implications for the novice programmer experience with AI code
generators such as Copilot.

2 RELATEDWORK

In this section we review recent related work on large language models, their use in computing
education, and prior user studies of AI code generators.

2.1 Large Language Models

In the field of natural language processing, great progress has been made recently in large lan-

guagemodels (LLMs). These are typically based on a deep learning transformer architecture and
often surpass previous state-of-the-art models in most generation tasks. For example, GPT-3 (a
text-to-text model) is able to produce text that can be difficult to distinguish from text written by
humans [22], and whose applications include summarizing, translation, answering questions, and
a variety of other text-based tasks.
LLMs are typically pre-trained by their developers who then provide access to the model to

others. Interaction with an LLM consists of giving it prompts, which are natural language snippets
that instruct the model to produce a desired output. The internal workings of LLMs are opaque
for most users, which has led to multiple approaches for constructing functional prompts, often
called “prompt engineering” [63]. For a thorough explanation of prompt engineering, see [63].

2.1.1 AI code generation. In addition to text-to-text and text-to-image models such as Dall·E
2 [77], several models specifically aimed at generating programming source code have been
released recently. These include Deepmind AlphaCode [61], Amazon CodeWhisperer [5], Code-
Bert [41], Code4Me [27], FauxPilot [40], and Tabnine [99]. These models are either trained with
source code or are LLMs augmented with additional training data in the form of source code.
While most of these are aimed at professionals, Copilot presents few barriers to use by novices as
it is free for students to use.
These models have proven to be unexpectedly capable in generating functional code. DeepMind

purports that AlphaCode can perform similar to the median competitor in programming competi-
tions [61]. Finnie-Ansley et al. found that Codex could solve introductory programming problems
better than the average student, performing in the top quartile of real students when given the
same introductory programming (CS1) exam questions [42]. A later study conducted by the same
group found that Codex was similarly performant in Data Structures and Algorithms (CS2) ex-
ams [43]. Chen et al. found increased performance in generating correct source code based on
natural language input when the model is prompted to also generate test cases, which are then
used for selecting the best generated source code [24].
In addition to their original purpose of generating source code, such models have been found

to be capable of other tasks. For example, Pearce et al. explored using several models for repairing
code vulnerabilities. While they found that these models were able to repair 100% of synthetic ex-
ample vulnerabilities, their performance was not as good with real-world examples [81]. Another
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study by Pearce et al. studied the applicability of AI code generators for reverse engineering [82].
LLMs trained with source code are also good at solving other problems, such as solving university-
level math [36], probability and statistics [100], and machine learning [109].

2.2 AI Code Generators and Computing Education

The literature on AI code generators in computing education is growing rapidly but to date there
are relatively few empirical evaluations and even fewer user studies. Given their very recent emer-
gence, the impact theywill have on educational practice remains unclear at this time [33]. Nonethe-
less it is clear that there will be many non-trivial impacts, and researchers are currently exploring
opportunities and challenges [10]. In work exploring the opportunities and risks presented by
these models, Bommasani et al. explicitly list Copilot as a challenge for educators [17], stating that
if students begin to rely on it too heavily, it may negatively impact their learning. They also raise
concerns about the difficulty of determining whether a program was produced by a student or a
tool like Copilot. Similar concerns around over-reliance on such tools were raised by Chen et al. in
the article introducing Codex [25]. They included “explore various ways in which the educational
... progression of programmers ... could be influenced by the availability of powerful code genera-
tion technologies” in directions for future work [25]. Just how students will adopt and make use
of tools like Copilot is unclear [39], but it seems certain they will play an increasing role inside
and outside the classroom.
In terms of empirical work in computing education, AI code generators have been evaluated in

terms of their performance on introductory programming problems and their ability to generate
learning resources. Early work by Finnie-Ansley et al. explored the performance of Codex on typ-
ical introductory programming problems (taken from exams at their institution) and on several
common (and unseen) variations of the well-known “rainfall” problem [42]. The model ultimately
scored around 80% across two tests and ranked 17 out of 71 when its performance was compared
with students who were enrolled in the course. In addition, on the “rainfall” tasks, Codex was ca-
pable of generating multiple correct solutions that varied in both algorithmic approach and code
length. However, the problems in this study were generally fairly simple, and it is likely that more
human interaction with the models would be needed for more complex problems [6]. Savelka et al.
evaluated GPT-3 on multiple choice questions, quizzes, and more complex programming projects
in introductory and intermediate programming courses and found that it is capable of achieving
more than passing scores [95].
More recently, Sarsa et al. explored the natural language generation capabilities of Codex

by using it to synthesize novel programming exercises and explanations of code suitable for
introductory programming courses [94]. They generated programming exercises by providing
a single example exercise as input to the model (“one-shot” learning), and attempted to create
new problems that targeted similar concepts but involving prescribed themes. They found that
well over 80% of the generated exercises included a sample code solution that was executable,
but that this code passed the test cases that were also generated by Codex only 30% of the time.
In addition, around 80% of the exercises involved a natural language problem description that
used the themes that were prescribed, illustrating the ability of the models to easily customize
outputs.
Large language models have also been found to be capable of producing pedagogical code

explanations [58, 67, 94]. Sarsa et al. used Codex to generate natural language explanations of code
samples typically seen in introductory programming classes [94]. Analysis of the thoroughness of
the explanations and the kinds of mistakes that were present revealed that in 90% of the cases all
parts of the code were explained, but that only 70% of the individual lines had correct explanations.
MacNeil et al. incorporated code explanations created by GPT-3 in an online ebook and found
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that students found these explanations useful for learning [67]. Leinonen et al. compared code
explanations created by GPT-3 and students and found that students rated the explanations
created by GPT-3 as being both easier to understand and being more accurate summaries of the
code [58].
Recent work has analyzed how well large language models could explain programming error

messages [60], which are notoriously hard for novice programmers to comprehend [11]. Leinonen
et al. found that Codex could be used to enhanced programming error messages in some cases,
although they note that the performance of the model was not good enough to use with students
directly [60]. Wermelinger [106] evaluated the capabilities of Copilot in the spirit of Finnie-Ainsley
et al. [42] who evaluated Codex and found it to still miss the mark more often than not. Reeves et al.
evaluated the ability of GPT-3 to solve Parsons Problems and found that the nature of generative AI
tools as next-token-predictors means that they often struggle to only use the lines of code provided
to them in the prompt to solve the puzzle [90].

2.3 User Studies of AI Code Generation Tools

Recent work has studied how developers use code generation IDE plugins such as Copilot.
Vaithilingam et al. had participants complete three programming tasks in Python within VS
Code [103]. For one of the tasks, participants used Copilot; in the other cases, they used VS Code’s
built-in IntelliSense code completion. Although participants did not save time with Copilot, a ma-
jority of participants (19/24) preferred Copilot over IntelliSense, citing “time saving” as a benefit.
Positive perceptions of Copilot included the generation of starter code and providing programmers
with a starting point – even if the starter code led to a “debugging rabbit hole”. On the other hand,
some participants found code generated by Copilot to be hard to understand and unreliable. In
contrast to the present study, which focuses on novice programmers, Vaithilingam et al. had only
one participant with fewer than two years of programming experience. They identified three (un-
named) “interaction patterns” that users exhibit when using Copilot. One of these which could be
called “confusion” is more of a result of interaction. The other two were “substitution for internet
search”, and “over-reliance”. They also identified two (also unnamed) “coping strategies” used to
deal with incorrect code: “accept-and-repair” and “delete and search” where participants rejected
Copilot’s suggestion and used internet search to proceed.
Barke et al. developed a grounded theory of interaction with Copilot. They asked 20 participants,

nine of whom already had experience with Copilot, to complete tasks and found that interactions
can be split into “acceleration mode’—in which programmers use Copilot to complete the code
they have already planned on writing—and “exploration mode’—in which programmers prompt
Copilot to write code they are not sure how to complete [8]. They observed that over-reliance on
Copilot can lead to reduced task completion, and having to select from multiple suggestions can
lead to cognitive overload.
Jayagopal et al. observed novice programmers using five program synthesis tools [50]. They

found that being able to prompt them by starting to write the desired code in the editor “appeared
to be more exciting and less confusing” than tools that require a more formal specification. They
also observed that novices would engage in prompt engineering if the generated code did not
satisfy their specifications, and would sometimes carefully read suggested code.
Bird et al. studied how professional developers who were first-time users of Copilot engaged

with it. They found that participants accepted suggestions for efficiency but in doing so gave up a
small amount of autonomy and control over their code, noting that some “wrestled” with this trade-
off [16]. A key observation was that developers using AI-assisted tools regularly spent more time
reading and reviewing code than writing—an observation that could have important pedagogical
implications.
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3 METHODOLOGY

In order to better understand how novice programming students interact with AI code generators,
we conducted a study observing participants using GitHub Copilot. We then interviewed students
about their experience.

3.1 Participants and Context

Participants were all university students age 18–22 enrolled in an introductory programming (CS1)
course at a Midwestern private research university in the USA. The language of instruction was
C++. We recruited 19 students (5 identifying as women and 14 identifying as men) to participate
in the study. All participants were novice programmers and came into the course with little to no
prior programming experience. The study took place in April 2022, during the final week of the
Spring semester. None of the participants had prior exposure to Copilot and were briefly trained
on what to expect and how to use it before the study began.
We observed students solving a new homework assignment in a similar style to all other assign-

ments that semester. Every assignment that semester appeared in the Canvas LMS through a plugin
to our automated assessment tool. The assignment (see Figure 2), modeled after the classic game
“Minesweeper” was at a level of a programming assignment that could have been assigned two
weeks prior. Solving the problem involved receiving input, nested loops, checking two-dimensional
storage for certain conditions, updating the received data when those conditions have been met,
and outputting the result. As with all programming assignments that semester, students could view
the problem description before coding and subsequently submitting their solution. Students were
observed during class time in an adjacent room to the regular lecture room. In this way, the context
of the study was similar to other invigilated in-class program writing assignments students had
received that semester. The only difference was that each student was observed one at a time.

3.2 Procedure

A single researcher sat in the room and observed one student at a time, taking notes about what
they did and said, following a think-aloud protocol [38]. Each participant had 30 minutes to com-
plete the program and was allowed to utilize Copilot as well as any resource such as notes or
the internet. This is the same time limit as other invigilated in-class code writing activities that
semester.
Each participant used Visual Studio Code (VS Code) with Copilot enabled. Copilot suggests

between one and several lines of code in light gray text (Figure 1), which students can either
accept by pressing the tab key or reject by pressing escape. Students can also just keep typing
when suggestions appear. As students type, Copilot immediately begins suggesting code based on
what is present in the text file and its suggestions generally become more accurate, useful and
relevant to the task as more code is written.
After completing the program, or after the allotted time had expired, we conducted a short

interview which was manually transcribed. Our interview questions were:

(1) Do you think Copilot helped you better understand how to solve this problem? If so, why?
If not, why not?

(2) If you had a tool like this yourself, and it was allowed by the instructor, do you think you’d
use it for programming assignments? If so, how?

(3) What advantages do you see in a tool like Copilot?
(4) What fears or worries do you have about a tool like Copilot?

Although interview questions are typically much more open-ended, we utilized these targeted
questions to focus on our user-centered approach to what student users want from such a system.
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Fig. 2. The prompt from the automated assessment tool describing the problem that participants were asked

to solve.

We tried to frame these questions such that their answers would be of value and interest to
instructors.

3.3 Analysis

To analyze the data we used reflexive thematic analysis [18, 20] which aims at understanding pat-
tern and meaning present in qualitative data. This approach requires researchers to engage deeply
with the data and develop themes in a process that is flexible, exploratory, and cyclical. Coding is
fluid and involves combining and splitting codes in an iterative process as the researchers become
more familiar with the data, and throughout the analysis [19]. Since codes develop throughout
the process, inter-coder reliability measures are not calculated, but instead reliability of results
is achieved through other means. To ensure reliability in our analysis, we held several group
meetings where authors compared codes and discussed differences as the themes began to emerge,
as is appropriate during reflexive thematic analysis [74]. Our themes are an output of the data
analysis process, rather than an input as occurs in some other forms of qualitative analysis. We
employed six main phases in our analysis, as outlined by Braun and Clark [18]:
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(1) Familiarization with the data: Observational notes and responses to interview questions
were shared with the research team. Four of the research team focused on the analysis and
read through a sample of the observational and interview data to become familiar with it,
noting initial ideas and associated codes. The codes that emerged from the data aimed at
capturing meaningful expressions and concept.

(2) Generate initial codes: Researchers involved in the analysis met to discuss their initial codes
and examples of data that reflected the codes. These codes were combined, split and extended
over four meetings as a growing shared understanding of the data was developed.

(3) Searching for themes: These codes were subsequently grouped into potential themes, which
were discussed at length. Examples of data that exemplified the potential themes were iden-
tified.

(4) Reviewing themes: The themes were reviewed in the context of the entire data set, and
refined through discussion and reorganization of codes to better reflect the data.

(5) Defining and naming themes: Names and clear descriptions for the themes were developed
to ensure consistency with the data and in the overall context of the study.

(6) Writing: The analysis was completed during the writing process with links formed between
the research questions, literature, themes, and data.

We found saturation being the point at which “additional data do not lead to any new emergent
themes” [46]. We treated the data from observations and interviews as a single data set since the
interviews asked participants to reflect on their experiences in the observation study. The themes
that emerged from the analysis of the complete data set therefore form a coherent narrative about
the experiences of participants using Copilot.
All methods and data collected from this study were approved by the IRB at the institution

where this study was conducted, Abilene Christian University. All participants signed informed
consent forms that discussed the study before participating. Data collected from participants was
immediately anonymized by creating a key only available to the researcher who collected the data.
All other researchers only saw fully deidentified data. All data was stored securely in a Google
Drive protected by multifactor authentication.

4 RESULTS

We identified several themes emerging from the data of both the observations and interviews:
Interactions,Cognitive, Purpose, and Speculation. These themes and the sub-themes that they
incorporate can be found in Table 1 along with the number of occurrences in our dataset and the
number of unique participants that we observed doing or saying something related to that sub-
theme. The sub-theme “No downside” appeared only in interviews, not in the observations. We
also include a breakdown at the sub-theme level of answers by interview question in Table 2. For
the counts of observation themes by participant, see table Table 3 and for interview themes by
participant Table 4. In the remainder of this section, we synthesize results from the observations
and interviews, organized by theme, using representative quotes to illustrate them and illuminate
participant thinking.

4.1 Theme: Interactions

This theme comprises observations about the interactions and actions taken by participants as
they completed the tasks, along with utterances from the observations and reflections from the
interviews that reflect those interactions. It was by far the most common theme in the dataset
and had four sub-themes. Coding is comprised of three kinds of behavior that we observed:
coding activities, adapting autogenerated code, and deciphering Copilot’s suggestions. We use
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Table 1. Themes and Sub-themes Arising from Observations and Interviews, Ordered by Observation

Sub-theme Count

Observations Interviews

Theme Sub-theme Count Unique Sub-theme Count Unique

Interactions

Coding 244 19 Coding 11 5
Accept 93 19 Accept 10 4
UX 68 17 UX 33 14
Reject 64 17 Reject 3 3

Cognitive

Confused 65 13 Confused 11 8
Positive Emotion 30 6 Positive Emotion 8 5
Metacognitive 24 10 Metacognitive 17 10
Negative Emotion 6 4 Negative Emotion 14 9

Purpose
Guiding 4 3 Guiding 49 15
Outsourcing 3 3 Outsourcing 46 17
Speed 1 1 Speed 37 17

Speculation
Intelligence 6 3 Intelligence 9 4
Future 2 2 Future 13 8
No downside 0 0 No downside 10 8

Table 2. Sub-themes Arising from the Interview Study, Listed byQuestion and Sub-theme Count

(For Items with Counts over 4)

Question Interviews Sub-theme Count Unique

Do you think copilot helped you better
understand how to solve this problem? If so,
why? If not, why not?

Guiding 20 10
UX 14 7
Outsourcing 12 8
Metacognitive 9 8
Speed 9 8
Confused 8 6
Coding 7 4
Intelligence 6 3
Positive Emotion 5 3

If you had a tool like this yourself, and it was
allowed by the instructor, do you think you’d
use it for programming assignments? If so, how?

Speed 13 11
Outsourcing 10 7
Guiding 8 5

What advantages do you see in a tool like

copilot?

Guiding 20 10
Speed 15 15
Outsourcing 7 6

What fears or worries do you have about a tool

like copilot?

Outsourcing 17 12
Future 10 7
UX 9 4
No downside 6 6

the term “coding activities” to mean some kind of programming-related task that is not already
covered more specifically elsewhere. The sub-theme User Experience attempted to bifurcate
how Copilot appears to the user (that is, the user interface) and any difficulties using it (that is, the
usability).
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Table 3. Participant Observation Themes and Sub-themes, Ordered by Total Count

Participant

Theme Sub-theme 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

Interactions

Coding 27 13 5 12 10 19 23 19 23 18 10 2 6 4 19 18 3 3 10 244
Accept 6 2 3 10 5 7 3 2 4 6 4 7 1 3 6 7 5 4 8 93
UX 5 10 1 3 5 2 2 6 10 4 2 1 5 6 3 1 2 68
Reject 11 8 4 2 9 1 4 5 2 1 4 2 2 2 2 3 2 64

Cognitive

Confused 2 5 1 1 9 12 4 4 6 6 5 4 6 65
Positive Emotion 2 11 1 2 7 7 30
Metacognitive 1 2 3 3 6 1 2 4 1 1 24
Negative Emotion 1 1 2 2 6

Purpose
Guiding 2 1 1 4
Outsourcing 1 1 1 3
Speed 1 1

Speculation
Intelligence 3 2 1 6
Future 1 1 2
Total 56 33 14 26 21 41 30 29 52 52 37 21 21 25 51 39 13 21 28

Table 4. Participant Interview Themes and Sub-themes, Ordered by Total Count

Participant

Theme Sub-theme 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

Purpose
Guiding 4 2 4 1 3 2 1 2 10 1 8 2 4 4 1 49
Outsourcing 1 3 1 2 4 2 3 2 1 1 2 2 1 4 2 6 9 46
Speed 3 3 3 2 2 1 2 2 2 2 1 1 2 1 3 4 3 37

Interactions

UX 9 1 1 2 3 1 4 1 3 2 1 1 1 3 33
Coding 4 1 1 1 4 11
Accept 5 1 1 3 10
Reject 1 1 1 3

Cognitive

Metacognitive 1 3 1 2 1 2 2 2 1 2 17
Negative Emotion 2 1 1 1 1 3 1 2 2 14
Confused 2 2 1 2 1 1 1 1 11
Positive Emotion 1 3 1 2 1 8

Speculation
Future 1 1 1 1 3 3 2 1 13
No downside 2 1 1 1 2 1 1 1 10
Intelligence 1 3 1 4 9
Total 32 10 10 8 17 13 8 7 18 14 7 7 10 9 30 10 25 13 23

Accept here means pressing Tab after Copilot generated a suggestion, which then placed the
suggested code into the file. A suggestion is necessarily distracting because it takes up space in
the user’s view of a file. But when interrupted with a suggestion, if the user just keeps typing,
that suggestion disappears. As the typing continues, perhaps another suggestion is made; and so
it continues. In the extreme case, users can type out complete files of code and ignore copilot all
along the way without having to “interact” with a “UI.” The suggestions just keep appearing and
disappearing as the user keeps typing. Although it can be very distracting, no extra keystrokes or
mouse clicks are required to ignore all these suggestions. Participants accepted both small (one
line) and large (multiline) suggestions at an even rate. The ideal accept is one where Copilot offers
both useful and necessary code that the user can utilize without modification. For our participants,
this most often occurred when Copilot generated code they could easily spot check for correctness,
such as a standard input for-loop or a single “cout” statement. Since the presumption is that users
are considering each suggestion, we call it Reject when participants saw a Copilot suggestion,

but continued typing anything but the Tab . Several interesting interaction patterns emerged from
data tagged with this theme, which we discuss below.

4.1.1 Interaction Pattern: Shepherding. The first interaction pattern, shepherding, is based on
three behaviors, the first of which was the phenomenon of the “slow accept.” Here participants
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would type out Copilot’s suggestion, often character for character, without outright accepting it

(by pressing Tab ). We noticed this behavior 14 times in 7 different participants. These experiences
were not limited to the first time they encountered Copilot’s suggestions. In one case, participant

#4 typed out a slow accept of a for-loop, then pressed Tab to accept Copilot’s suggestion for what
should go inside of it, and then performed another slow accept later for the next loop. Participant
#9 performed a slow accept near the end of their session after a slough of regular accepts, rejects,
and adaptations. This may indicate that novice programmers are unsure about dropping large
amounts of code into their files that they did not write themselves. Participant #1 said:

P01: “I spent majority of the time decoding the code it gave me...If I saw a prompt I mostly
understood, I might use it to help auto fill small parts. I might look through a large chunk
of code and see if it’s something I could actually use and is the way I want to do it. For
someone who is less familiar with the language it could be a hindrance. You might have
code that works but you have no idea how it works.”

The second interaction behavior in shepherding is “backtracking.” This occurred when a partici-
pant would delete code that they had just accepted without making modifications to it. There were
13 participants who did this at least once and it was the fifth most-frequently occurring behavior
we observed (35 times). This indicates that novice programmersmay accept auto-generated sugges-
tions without carefully reviewing them first, only to delete them immediately afterward, leading
to a distracted workflow. This behavior is similar to one of the two unnamed “coping” strategies
identified by Vaithilingam et al. [103] who noted that “In cases where the participant is unable or
unwilling to repair the code, they will simply get rid of the entire generated code”. Some quotes
from participants illuminate this further:

P06: “If you do not know what you’re doing it can confuse you more. It gives you code that
you do not know what it does.”
P10: “A downside is having to read suggestions and then delete it.”
P14: “I found it annoying when I hit tab and it wasn’t at all what I needed.”

The third interaction behavior in shepherding is “adapting.” Novice programmers often simply
accepted code generated for them, but would also adapt it to fit their needs. Sixteen of 19 partic-
ipants spent at least some of their time adapting code generated for them while several did this
for the majority of their time. This caused those in the latter group to write very little code from
scratch. This may have contributed to their sense that Copilot was saving them time. These behav-
iors (slow accept, backtracking, and adapting) contribute to the first novel LLM interaction pattern,
shepherding, which is the idea that students spend a majority of their time trying to coerce the tool
(i.e., Copilot) to generate the code they think they need. This interaction pattern occurred in 7
participants, most frequently moving in the order presented above in 5 participants: slow accept
-> backtracking -> adapting. We also observed other combinations of the behaviors, such as partic-
ipant 12 adapting -> slow accept -> backtracking and participant 19 backtracking -> slow accept ->
adapting. It is possible that shepherding is a novice analogue to the ‘wrestling’ that was observed
by Bird et al. in their observations of professional developers [16].

4.1.2 Interaction Pattern: Drifting. The second interaction pattern, drifting, is based on two
behaviors. The first behavior in drifting is “deciphering” large blocks of unhelpful code (i.e.,
auto-generated code that would not lead to a correct solution), observed in 18 participants. These
blocks of code often seemed like a nuisance to participants. The constant stream of suggested
code was also distracting, since most participants would stop what they were doing and attempt
to decipher the suggested code once it appeared. This indicates that novices may have difficulty
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utilizing Copilot when it is constantly interrupting their problem solving process with dense code
suggestions of which they cannot immediately determine the value. Participants struggled with
this in various ways, saying:

P01: “Keeps prompting stuff when you don’t need it. It makes it difficult to read what you’re
typing.”
P06: “Kept prompting things when I didn’t need them.”
P10: “Some of the suggestions are too big and confusedme onwhat it was actually suggesting.
Wasted time reading instead of thinking.”
P15: “How do you make it only do one line and not the entire thing?”

The second interaction behavior in drifting was observed when participants would “accept”
and “adapt” these incorrect code suggestions that participants didn’t understand. In other words,
adapting the malformed auto-generated code only led them further away from a correct solution
and instead, down a “debugging rabbit hole” which is a phenomenon also observed in a prior
Copilot user study [103]. We observed this behavior in 10 participants. For instance, participant #1
accepted code, attempted to decipher it, adapted it, and then deleted it. They repeated these steps
three times before deleting everything and starting over. After accepting the next prompt, they
spent time reading it before realizing that the code asks for input into a variable and then never
uses that variable. They then undid that before accepting, adapting, and deleting pieces of the next
suggestion. At the end of the observation, they had this to say about question #1:

P13: “It gave good baseline code. It also didn’t work well. The code it suggests is not nec-
essarily correct and confused me. The code was relevant to the topic, but not necessarily
useful. It declared a variable that was never used, so I spent a majority of the time decoding
the code it gave me.”

In some cases, participants accepted incorrect code without even trying to adapt it. Participant
#13 was observed decipheringmultiple times, but never adapting. They acceptedmany of Copilot’s
suggestions, even when those code suggestions would not have helped them solve the problem and
they didn’t seem to be aware of it. Despite that, they had this to say near the end of their coding
session:

P13: “It kind of feels like it’s generating what I’m thinking. Doesn’t feel right, ya know?”

Finally, after spending much time attempting to understand and adapt the unhelpful code, par-
ticipants would often delete it and start over with the next suggestion. The sequence of these
behaviors leads us to propose a second novel interaction pattern: drifting. Copilot is intended to
be utilized as a tool to help developers. The interaction behaviors we have observed here are not
reflective of how Copilot is utilized by experienced developers. Barke et al. reported that expe-
rienced coders will use it to move quickly through their work (acceleration) or discover options
(exploration) [8]. Unlike professional developers, novices lack the understanding to know when
suggested code will help them solve the problem. Drifting then is a cycle consisting of the be-
haviors of deciphering and accepting/adapting unhelpful code suggestions. The user is drifting
from one suggestion to the next, without direction, allowing Copilot to push them along aimlessly.
Ten participants engaged in this pattern at least once, but five participants found themselves in a
drifting cycle, repeating these same steps multiple times in the same session.

4.2 Theme: Cognitive

Cognitive is the second theme in Table 1 and comprises observations and utterances that reflect
participant cognitive state—what they were thinking or feeling—and comprises four sub-themes.
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Confused describes when participants did not understand the code Copilot would generate, were
confused about how Copilot itself works, and other related elements that were not about Copilot.
Metacognition is thinking about thinking. In the context of programming, it involves how
programmers solve problems and the process they go through to do so [65] and the programming
environment likely plays a role in this [51]. Although it is a difficult phenomenon to observe, our
participants were seen struggling with the prompt and re-reading it, working out the problem on
paper and pencil, and using Copilot to explore possible solutions when stuck. Positive Sentiment

occurred when participants verbally expressed some kind of positive emotion or exclamation
during the observation session, including laughter, wonder, and excitement. Many of these were
genuinely surprised and happy at Copilot’s capabilities. Negative Sentiment similarly occurred
when participants were frustrated or annoyed while they were engaged in the programming task.
This was often linked to the appearance of large blocks of code suggested by Copilot. However, it
also occurred when the suggestions were incorrect or unhelpful.

4.2.1 Finding a Way Forward. Participants were often confused by the output generated by
Copilot, an observation also made by Vaithilingam et al. [103] and Barke et al. [8]. We also ob-
served that the auto-generated feedback from Copilot was not always correct, especially early
on. For instance, participant #9 saw Copilot generate a suggestion for input that didn’t match
the problem specification and asked out loud, “Is this correct?” Participant #14 verbally expressed
confusion when Copilot generated a comment instead of a line of code, causing them to change
their understanding of what Copilot would do and how it could be used. Participant #10 interacted
with Copilot for several minutes, accepting multiple suggestions, while still acting and talking like
Copilot would also check their program for correctness (much like an automated assessment tool).
The cognitive difficulties arising for novices using Copilot can be illustrated with the following
quotes:

P6: “if you do not know what you’re doing it can confuse you more. It gives you code that
you do not know what it does.”
P13: “It’s intrusive. It messes up my thought process. I’m trying to think of a solution, but it
keeps filling up the screen with suggestions. And I’d be tempted to follow what it’s saying
instead of just thinking about it.”

However, other participants were able to use Copilot’s suggestions when they became stuck as
a way of finding a path forward. Using a system like Copilot to discover solutions when stuck is
perfectly illustrated in the following quote:

P15: “It was kind of like rubber ducking without a person.”

“Rubber ducking” is a practice some programmers use that involves verbalizing issues to some-
one or something (classically a rubber ducky). This participant understands the value of rubber
ducking and seems to indicate some kind of usual preference for practicing it with people rather
than inanimate objects. More interestingly, P15 seems to believe that Copilot can be substituted
for this practice, which would mean it can act as a metacognitive scaffold (i.e., facilitating thinking
about the problem they are trying to solve and where they are in the problem solving process).

4.2.2 Emotion. The cognitive and metacognitive aspects of using Copilot generated both pos-
itive and negative sentiment in participants. For instance, participant #1 laughed when they saw
the first multi-line suggestion generated by Copilot. Participant #14 said, “whoa that’s super weird”
and “that’s insane!” at different times during their session. Many of these participants expressed
feelings appearing to be related to joy and surprise. In response to code generated by Copilot, par-
ticipant #18 said, “Oh! That’s pretty cool! It, like, read my mind!”, “Oh wow. Stop. That’s crazy.”,
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and “Where did you find this? Where was this when I was learning programming?” Though only
about a third of participants expressed positive emotion, this indicates the kind of emotional reac-
tion possible when a first experience goes as it should and we discuss this further in our design
implications. Beyond mere excitement, positive emotion can directly benefit students who may
find themselves intimidated or anxious about learning programming:

P3: “For people like me who don’t know what they’re doing, coming into coding with no
prior experience, it’s more encouraging that once you get on the right path you start seeing
suggestions that help you. It helps me feel more like I know what I’m doing and feel better
about my work and that I can continue a career in computer science.”

On the other hand, negative emotions can reduce student ability to persist and complete tasks
required during learning [54]. This can be something as big as failure to move forward in the prob-
lem solving process after a lengthy amount of time or as small as receiving feedback in the form
of error messages from the compiler. One example of this from our observations was participant
#15 who accidentally accepted some code suggested by Copilot and then became visibly agitated
by the addition of that code. Some participants appeared to be frustrated by the amount of atten-
tion that Copilot demanded. For example, participant #7 reported “It kept auto-filling for things I
didn’t want”. Along similar lines, participant #15 was annoyed with the large blocks of code Copi-
lot would suggest and said that “It giving too large of subsections is frustrating.” Although these
examples of negative interactions were relatively rare, it remains unknown if such interactions
would lessen or be exacerbated with prolonged use of Copilot.

4.3 Theme: Purpose

The third theme in Table 1 is Purpose, which captures the reasons that participants give for using
Copilot, and potential issues that arise from those motivations, collected from utterances during
observation and reflections during interviews. Three separate sub-themes comprise this theme.
Guiding refers to Copilot assisting participants through the programming problem-solving pro-
cess, such as helping them learn something new or discover previously unknown edge cases. Out-
sourcing contains two distinct ideas. The first is that participants may be concerned that Copilot
could generate working code that they cannot understand and therefore could begin to treat it
like a “black box.” The second was the concern that Copilot could become a crutch. Finally, Speed
refers to any sentiment from participants that Copilot will help them complete their assignments
faster than they would otherwise be able to accomplish on their own.

4.3.1 Learning. Participants commented positively on the guidance that Copilot provided
them. Such comments often referred to higher level direction setting and problem solving. For
example:

P05: “if I had a general idea of how to do something it might help me be able to finish it or
know what to do next.”
P06: “might give some useful ideas on how to solve the problem.”
P15: “I kind of knew what I need to do, just not how to execute it.”
P19: “It’s guiding me to an answer.”

Three participants specifically mentioned how Copilot’s suggested code taught them some-
thing they didn’t know before. While it’s possible to solve the Minesweeper problem with a one-
dimensional array, some may find it more intuitive to use a two-dimensional array. However, the
course had not yet covered this material. Nevertheless, when Copilot auto-generated code with
a two-dimensional array, several students remarked that they had just learned something new.
Another example illuminates this further:
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P08: “There was a case I hadn’t thought of and it auto-completed it and I was like: Oh, I guess
I need to think about that case.”

Several participants also expressed concerns about using Copilot in practice and potential neg-
ative effects on learning. Some worried that they wouldn’t learn what was necessary to succeed
in class (and, therefore, the field):

P03: “If someone is using it all of the time, then they’re not actually processing what’s going
on, just hitting tab, and they don’t know what exactly they’re implementing.”
P06: “I don’t have to know how to code, it would just do it for me.”
P08: “It would make me a worse problem solver because I’m relying on it to help me out.”

Students were aware of the risk of over-reliance on the suggestions produced by Copilot and this
idea appeared in one third of the sessions. On introductory level problems like the one in our study,
Copilot generates correct solutions most—but not all—of the time [42]. Over-reliance on the tool
is thus a particular problem when the suggested code is incorrect, as noted by participant #11: “I
could potentially see myself getting a little complacent and at some point not really proofreading
the longer bits it suggests and then missing something.” Students also expressed concerns that
using Copilot like a crutch would hinder their learning, such as participant #12, who said: “If I was
using it, I would become dependent on it. I might zone out in class and not pay attention because
I would think ‘Oh I could just do this with Copilot.’ So it would be my crutch.”

4.3.2 Going Faster. Students perceived efficiency gains from not having to type the code them-
selves as well as from suggested approaches for solving the problem. Similar interactions were
noted by Barke et al. [8] who called this class of behavior ‘acceleration’. Participants stated this as:

P01: “If I saw a prompt I mostly understood I might use it to help auto fill small parts.”
P02: “Yes, it made it faster to think of ideas on how to proceed.”
P06: “If I can do the program without it I wouldn’t, if I knew how to solve it I would use it
to be faster.”
P11: “It would have taken me forever to type out the loop, but it put it in and all I had to do
was proofread.”

One participant noted the efficiency gained by a shift away from time spent typing code and
toward time spent thinking about the problem: “So much faster! It got me to testing in less than 20
minutes and most of that time was me reading the problem and thinking about it.” Copilot tends
to generate syntactically-correct suggestions, and thus may be particularly helpful in assisting
students to avoid syntax errors. A couple of participants illustrated this well during the interview:

P11: “And then the syntax is a huge thing. It just gave me the syntax and all I had to do was
proofread.”
P17: “If nothing else, it cuts down on time and going back-and-forth checking how to do
things. I liked having Copilot for syntax because that’s been my biggest challenge so far.”

Despite mostly positive statements regarding speed improvements, not all participants viewed
it as a benefit to avoid typing code to save time. However, some of the participants in our study
recognized the value in typing out code as a kind of practice for learning, noting that accepting
Copilot suggestions can interfere with this:

P18: “I think typing out your own code helps you memorize little things and details. When
you have it handed to you, you forget little things like semicolons or where parentheses are
supposed to be.”
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4.4 Theme: Speculation

The last theme in Table 1 is Speculation and includes any statements about the potential future
use of Copilot and the concerns or issues that might arise. There are three sub-themes that com-
prise this theme. Intelligence here refers to when a participant indicated they thought there was
some level of intelligence in Copilot, such as it “knowing” things. Future refers to participant
speculation about the world as it will be once tools like Copilot are commonplace, such as putting
programmers out of their jobs. Finally, we tagged participant reflections in the interviews withNo
downside if they did not say anything negative about the implications of using Copilot.

4.4.1 Agency of Artificial Intelligence. Copilot was a new experience for the participants, and
their exposure to the tool was limited to the 30 minute programming activity used in the observa-
tion study. During the coding activity, several participants reported that they felt that Copilot was
aware, knowledgeable, and had agency. The following quotes illustrate this feeling:

P13: “Does Copilot know what I’m trying to do? It kind of feels like it’s generating what I’m
thinking.”
P19: “It’s guiding me to an answer.”
P18: “It like read my mind!”
P15: “I thought it was weird that it knows what I want.”

4.4.2 Fears and Concerns. Given the attribution of intelligence to the system, it is unsurprising
that some of the responses from students were speculative and expressed concerns about how it
might be used in the future. For example, participant #15 expressed concern that “It might take over
the world and write its own code.” Two students also expressed concern that Copilot may impact
the job market, perhaps taking jobs from software developers. Students also expressed concerns
that Copilot may raise ethical issues involving privacy, and were uncertain about the implications
for plagiarism. We discuss these further in Section 5.

5 DISCUSSION

We now return to our research questions to discuss the implications of our findings on novice
programmers using LLM-based AI code generators such as Copilot for the first time. We then dis-
cuss ethical considerations arising from the use such systems. Finally, we offer design implications
based on all of the findings and insights we have presented.

5.1 User Interactions

Our first research question was, “How do novices interact with GitHub Copilot when they first
encounter it?”
As the code suggestions by an AI code generator could be seen as feedback on the student’s

current program, we discuss the results of the first research question with the theoretical lens
of feedback. We consider the suggestions of Copilot through Hattie and Timperley’s model of
feedback that focuses on three feedback questions “Where am I going?”, “How am I going?” and
“Where to next?” [47].

Copilot mainly gives students feedback on “Where to next?” We found that novices happily
utilized Copilot and both accepted and rejected Copilot’s code suggestions. Rejecting some sug-
gestions implies that at least some of the novices thought that the feedback by Copilot could be
wrong. Novices used Copilot both for initial guidance on the right direction to take and for cre-
ating code when they knew what they wanted. These align with prior work by Barke et al. who
categorized experienced programmers’ Copilot use into “exploration” and “acceleration” [8]. From
the point of view of feedback, exploration could be seen as the students trying to get feedback from
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Copilot on their initial ideas of how to solve the problem (“Where am I going?”), while accelera-
tion would align more with getting feedback on the current implementation strategy (“How am I
going?”).
In addition to exploration and acceleration, we observed two novel types of behavior that we

call “shepherding” and “drifting”. In shepherding, students spent the majority of the time trying to
coerce Copilot to generate code, which, for this set of novice users, we view as a potential signal of
tool over-reliance. This is similar to earlier results that have found that students sometimes develop
an over-reliance on automatically generated feedback from automated assessment systems [7].
In the case of these systems, prior work has presented multiple ways of trying to combat over-
reliance such as submission penalties [7, 59] or limiting the number of submissions students can
have [35, 49, 59]. It is a good question whether similar limits should be imposed on novices using
AI code generators such as Copilot to try to curb over-reliance. From the feedback point of view,
focusing solely on “Where to next?”, which Copilot is most apt in, might lead novice students down
incorrect solution paths – this is similar to prior work where more experienced programmers were
led down “debugging rabbit holes” by Copilot [103].
In the other novel behavior we observed, “drifting,” students hesitantly accepted Copilot’s sug-

gestions, possibly played around with them, but then ended up backtracking and deleting the code,
only to repeat the cycle from the beginning. From the point of view of feedback, here, students
might be suspicious of the feedback of an AI-system—prior work has found that human trust in AI
advice depends on the task and to what extent the human believes the AI to be capable of giving
advice on the task [104]. In addition, most existing automated feedback systems in programming
focus more on identifying errors (“How am I going?” and “Where am I going?”) and less on provid-
ing actionable feedback [53], and thus students might not be accustomed to receiving automated
feedback on “Where to next?”.
Even though participants would occasionally reject Copilot’s suggestions, most participants

seemed to have a high confidence in Copilot, believing it would generate useful and correct code
most of the time. This might be especially true for novices, who could be familiar with automated
assessment systems where the feedback is based, e.g., on instructor-created unit tests [53] where
the assumption of the feedback being correct is typically valid. Novices tend to view feedback in
programming contexts to be the truth and the systems generating it to be infallible [56]. When
using LLM-based AI code generators such as Copilot, however, this belief is troublesome – recent
studies in the context of learning programming have found the correctness of Codex (the LLM
that powers Copilot) to be around 70%–80% [42, 94], meaning that in about 20% –30% of cases, the
suggestion by Copilot would be incorrect. This is especially troublesome for novice programmers
who might have a hard time identifying whether the suggestion is correct or not.

One might assume that since participants were prompting the system for C++ code that it might
generate highly advanced features from newer releases, e.g., C++20. However, language models
like Codex can best be seen as continuing the prompt they were given. This has the effect that
Codex will generate code of a similar level of sophistication to the code which it was prompted
with, including the possibility of introducing more bugs if prompted with buggy code [25].

While some of these sorts of issues will likely be minimized over time, or perhaps even through
just one session with Copilot as students gain familiarity with the tool, it is still important to
think through the very first interaction with the system. We consider this point further when pre-
senting design implications (Section 5.5). Moreover, these interaction patterns fit well with those
of Vaithilingam et al. who studied experienced programming students [103]. They reported that
students often spent too much time reading the large code blocks suggest by Copilot and the con-
stant context switching between thinking, reading, and debugging led to worse task performance.
Overall, this seems to be worse for the novice programmers in our study who spent more time
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deciphering code and were more easily confused and led astray. This is because, as Chen et al.
write, the model is not aligned with the user’s intentions [25]. Here, one possibility is that the
user (the student) is using Copilot as a feedback mechanism where the user expects feedback to
be actionable and of good quality, while Copilot’s original purpose is to be the user’s “AI pair pro-
grammer”, where it might be expected that some of the suggestions are not worthwhile to explore.
The primary benefit that novices saw in using Copilot was that it accelerated their progress

on the programming task, mirroring results with experienced programmers as reported by Barke
et al. [8] and Vaithilingam et al. [103]. A related benefit of using Copilot suggestions over typing
code directly is the avoidance of syntax errors. The computing education literature documents syn-
tax errors—and the messages they generate—as presenting a significant challenge to both novices
and students transitioning to new programming languages [11, 31]. Although Copilot’s sugges-
tions are capable of inserting syntactically-invalid code, the vast majority of its suggestions are
syntactically-valid, and use identifiers appropriate for the existing code context. Essentially, Copi-
lot might enable the student to work on a higher level of abstraction where they can spend their
mental effort on thinking about the semantics of the program instead of the syntax.
Conversely, the “slow accept” phenomenon in which participants simply typed out the code sug-

gestions character by character, could also be beneficial to student learning. This form of typing
practice has pedagogical benefits for learners and researchers have explored similar typing exer-
cises, in which learners must type out code examples, as a way to help novice students practice
low-level implementation skills [44, 57]. While Copilot provides good opportunities for this type
of practice, it is tempting to simply accept Copilot’s suggestions.

5.2 User Perceptions

Our second research question was, “How do novices perceive their first-time experience of using
GitHub Copilot?”
For introductory programming, Copilot could help novice programmers in creating code faster

and help avoid the programming version of a “writer’s block.” Copilot could alsowork as ametacog-
nitive scaffold, guiding students to think about the problem they are solving at a higher level, such
as planning the structure of the code and then creating individual components with Copilot. Thus,
we discuss the results related to the second research question mainly with the theoretical lens of
metacognition and self-regulation.
Programming is a complex cognitive activity [79] that often involves deep metacognitive knowl-

edge and behaviors [66]. One example of a programming activity that includes both the cognitive
and metacognitive aspects is code tracing with concrete inputs, something constrained to work-
ing memory [28]. Several participants in our experiment took out a notepad and pencil when they
became stuck in an attempt to work the problem, which is a clear example of a reflectivemetacogni-
tive behavior like self-regulation [64]. Others faced the kind of metacognitive difficulties described
by Prather et al. like feeling a false sense of accomplishment at having a lot of code, but still be-
ing far from a working solution [88]. Several participants misunderstood the problem prompt and
had to return to it multiple times, a pattern also seen by Prather et al. [87]. Still, others utilized
the system like a colleague who can help them when stuck, a behavior previously documented
between students co-regulating their learning in study groups [86], and which matches the idea
of Copilot being “your AI pair programmer.” While metacognitive skills in novice programmers
are becoming increasingly important [66, 85], there are clear opportunities for tools like Copilot
to scaffold and enhance these behaviors from the very start. We discuss this in design implications
below (Section 5.5).

In the article introducing the Codex model, Chen et al. outline a number of potential risks that
code generation models present [25]. The first of these risks is over-reliance by developers on

ACM Transactions on Computer-Human Interaction, Vol. 31, No. 1, Article 4. Publication date: November 2023.



4:20 J. Prather et al.

the generated outputs, which they suggest may particularly affect novice programmers who are
learning to code. Indeed, this was the most common concern echoed by the participants in our
study when asked to describe their fears and worries around this new technology. Our participants
acknowledged that such over-reliance could hinder their own learning, a concern that has also
been expressed by computing educators [39]. From the point of view of self-regulation, students
will need better self-regulation skills to self-control their use of tools like Copilot to not develop an
over-reliance on them—at least when they are freely available for use at the student’s discretion.
In fact, we hypothesize that over-reliance on tools like Copilot could possibly worsen a novice’s
metacognitive programming skills and behaviors.
Naturally, as we enact these cognitive and metacognitive behaviors, emotional arousal can be

triggered in response. Emotion is a key part of creating usable designs [2, 21, 69]. When novice
programming students experience negative emotions, it can directly negatively impact their feel-
ings of self-efficacy [55]. Self-efficacy, which is a related metacognitive belief, is one of the most
direct measurements that correlates to a student’s success or failure in computer science [91]. The
potential for the design of a tool like Copilot to arouse positive emotion, encourage, and therefore
increase self-efficacy, especially in traditionally underrepresented minorities in computing, should
not be understated. Women and underrepresented minorities consist of just 18% and 11% of bach-
elors degrees in computing, respectively, and are often part of the so-called “leaky pipeline” [23].
Negative experiences tend to impact underrepresented groups more than majority groups, leading
to dropping from the major [70]. Copilot’s current interaction style may actually promote cogni-
tive and metacognitive difficulties as well as negative emotion in novice users, which would have
the opposite effect on their self-efficacy. We believe our design recommendations (Section 5.5) can
help mitigate these concerns.

5.3 Differentiation From Expert Usage

Our findings reveal that Copilot provides a variety of assistance to novices working on typical
introductory-level programming tasks, from the avoidance of trivial syntax errors to guidance
through the problem-solving process. Dealing with syntax errors has historically been a no-
toriously difficult task for novices learning to program [11, 32]. Thus, on its own, the use of
Copilot to help generate syntactically correct code already promises to be a significant learning
aid. Moreover, problem-solving is a core skill that novices must develop and is sometimes
taught explicitly with the help of targeted tools [65, 83]. We observed students using Copilot
directly to aid their problem-solving, and commenting positively on this support. Thus, there is
considerable utility in the support that Copilot provides for learners transitioning into the world
of programming. We observed a number of interesting interaction patterns, broadly categorized
under the themes of “shepherding” and “drifting”, tailored to the requirements of novice learners.
Thus we can contrast the human-Copilot interactions between novices and experts in several
ways.

Firstly, Copilot is designed to be used by experts with the primary goal of boosting productivity
or resolving specific issues [84]. Conversely, novices are engaged in the process of grasping foun-
dational programming concepts, and thus leverage Copilot to bridge their knowledge gaps and
enhance their understanding of complex ideas that are just beyond their current level of knowl-
edge. For example, participants commented on the guidance that it provided, such as helping them
“know what to do next”. Secondly, novices acquire essential programming knowledge in a progres-
sivemannerwhile interactingwith Copilot. From very basic beginner-level tasks tomore advanced
challenges, Copilot can help to sustain this growth by offering customized assistance. This differs
from typical interactions between Copilot and professional programmers who have already devel-
oped a broad level of expertise in multiple areas.
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Exploration and experimentation are also key difference between novice and expert interac-
tions with Copilot. As learners work to develop their programming skills, an important aspect
of learning is experimentation with different approaches and making and recovering from mis-
takes. Copilot enables this type of exploration as learners can try alternative approaches in a safe
environment where errors can be easily identified and corrected. For example, we observed par-
ticipants using Copilot to get initial feedback on their ideas. This type of exploration can enrich a
novice’s understanding of programming principles, which is different to the experience of expert
programmers who are typically looking for an immediate solution, for example, to optimize or
refine existing code and are less likely to explore and compare alternative approaches.
Finally, we observed some interaction behaviors that are unique to novices, notably the “slow

accept” where a learner would type character for character over the top of a suggestion. This
interaction behavior suggests a learner who is building confidence with syntax, and is not likely
to be common for expert programmers who are seeking improved productivity. In general, the
contrast between pedagogical usage and expert application showcases Copilot’s versatility, but
also suggests there is a need for design considerations to cater for different audiences. We address
these design considerations explicitly in Section 5.5.

5.4 Ethical Considerations

Anumber of complex ethical issues have emerged from the recent development of powerfulmodels
for AI code generation. These include issues relating to the data on which the models are trained,
raising legal and societal concerns, and immediately pressing issues relating to academic miscon-
duct. We found it interesting that even with the short exposure to Copilot in our study, participants
raised concerns about a range of ethical issues such as privacy and employability, suggesting that
Copilot may initially be perceived as threatening by some students. We suggest that it is important
for educators to be aware of these concerns, and to help students appreciate the implications of
tools like Copilot. The issues we raise are also relevant for designers, as we discuss in Section 5.5.

5.4.1 Academic Misconduct. Academic misconduct is a widespread problem in many disci-
plinary areas [72, 96]. The availability of AI code generators makes this a particularly complex
problem for computing educators because they increase the opportunity for misconduct to occur
while at the same time decrease the likelihood that it is detected. Code generators like Codex have
been shown to perform better than the average student on introductory-level programming prob-
lems, thus they provide an effective tool for students who might be contemplating cheating [42].
Compared to traditional forms of cheating, such as contract cheating or copying work from other
students, AI-generated solutions do not require communication with another person and thus
there are fewer risks of being caught [107]. Moreover, AI-generated code is diverse in structure
and resilient to standard plagiarism detection tools. Biderman and Raff show that introductory
level programming assignments can be completed by AI code generators without triggering sus-
picion from MOSS, a state-of-the-art code plagiarism detection tool [15].
A recent systematic review of the literature on plagiarism in programming assignments reported

the common ways that students rationalize acts of plagiarism [3]. These included a belief by stu-
dents that it was acceptable to use code produced by others if it required some effort to adapt. This
raises questions about whether code generated by Copilot and then modified by a student can
count as their own for academic submission purposes. Most development environments provide
some standard code completion tools for basic syntax elements. Copilot extends this autocomplete
interaction to suggesting large blocks of code, some of which we observe students choose to type
out character by character. In such a case, can a student claim to have created the program them-
selves? Reminiscent of the classic Ship of Theseus thought experiment, it remains an open question

ACM Transactions on Computer-Human Interaction, Vol. 31, No. 1, Article 4. Publication date: November 2023.



4:22 J. Prather et al.

as to howmuch is too much when it comes to code generated by a tool versus written from scratch
by a student if we are to claim that the student wrote the code submission. We expect significant
implications ahead for issues of academic integrity, and a clear need for an updated definition of
plagiarism [30].

5.4.2 Code Reuse and Intellectual Property. As educators, one of our roles is to teach students
about their professional responsibilities when reusing code outside of the classroom. Code that is
publicly available, such as the code repositories used to train the Codex model, may be subject to
various licenses. In particular, code from open-source software packages is often released under a
GPL license which states that any derivative works must be distributed under the same or equiva-
lent license terms. However, when code is generated by AI models, it is not always clear how the
source should be attributed. A recent legal controversy has arisen due to the fact that Copilot can
sometimes generate large sections of code verbatim from open source repositories, but not clearly
signal the source. This means that developers may end up using code but violating the license
terms without being aware of it. A class-action lawsuit was filed in November 2022 claiming that
Copilot violates the rights of the creators who shared the code under open source licenses [102].
When teaching students to use AI code generators, educators should also teach students about
how the models are trained so that they appreciate the legal and ethical implications. In a similar
vein, the use of Copilot and similar tools typically requires that the programmer gives their data
(e.g., source code and interaction with the model) to the developer of the tool (for example, GitHub
when using Copilot). In power relationships such as the student-instructor relationship, students
might feel pressured to yield their data.

5.4.3 Harmful Biases. Biases present in training data sets are known to lead to bias in subse-
quent AI models [14, 92]. This was demonstrated rather spectacularly with the recent launch of
Meta AI’s Galactica language model, trained on millions of academic papers, textbooks and lec-
ture notes [101]. Three days after it was launched, following a great deal of ethical criticism, it
was taken offline due to evidence that it would generate realistic but false information and content
that contained potentially harmful stereotypes. Code generation models are not immune to these
issues, which can suffer from misalignment between the training data and the needs of the end
users, to perpetuating more serious and harmful societal biases. The developers of Codex note that
it can be prompted in ways that “generate racist, denigratory, and otherwise harmful outputs as
code comments” [25], and that it can generate code with structure that reflects stereotypes about
gender, race, emotion, class, the structure of names, and other characteristics [25].

With respect to the data itself, code generation models are mostly trained on public code repos-
itories and this raises the question of whether the contents of these repositories are appropriate
for novices who are learning to program. For example, the style of code published in public repos-
itories may not match educational materials well, or may use advanced features which could be
confusing to novices. In addition, it has been shown that AI generated code can sometimes contain
security vulnerabilities, which may mislead learners into adopting bad coding habits [80].

As students begin to more widely adopt Copilot and similar code generating tools, it will be-
come increasingly important for educators to teach students about their broader social and ethical
implications.

5.5 Design Implications

In this section we reflect on the design implications that arise from the themes identified in the
observation and participant interview data. These interface design considerations are targeted at
better supporting novice programmers or first-time users. We imagine they will be less relevant
to experienced and expert programmers. Therefore, users should be able to select what kind of
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feedback they wish to receive from Copilot and adjust it or even hide it as they learn and grow in
programming skill.

5.5.1 Prompt Control. When students expressed frustration with Copilot, it was often due to
usability issues. In particular, students did not like being shown suggestions when they didn’t need
the help as this slowed them down. This suggests the need for a new interaction experience for
novices. Currently, Copilot generates suggestions in real-time and displays them without prompt-
ing by the user. In addition, Copilot provides the same interaction experience for all users. There is
scope tomake use of a wealth of contextual information—such as the type of problems being solved
and knowledge about the background of the user—to adjust how and when the code suggestions
are made. Novices who are learning to program may benefit from being able to attempt problems
initially on their own and request help when needed, rather than having to ignore suggestions
when they are not wanted.

Related to the drifting behavioral pattern that we observed, when Copilot suggested large
amounts of code, students typically spent a substantial amount of time and effort deciphering
the suggestion. Frequently, longer suggestions that were accepted were subsequently modified, or
deleted entirely. The utility of shorter suggestions was able to be determined more rapidly than
longer suggestions by participants, and short suggestions that were accepted were less likely to
be changed or deleted. This suggests that Copilot’s suggestions could be more useful to students
(especially novice students) with a selection algorithm that preferences shorter solutions, or fil-
ters longer solutions. We hypothesize that lengthy auto-generated code suggestions may lead to
an increased cognitive load [98] among novices and call on researchers to explore this in future
work.

5.5.2 Metacognitive Scaffolding. As discussed above, Copilot’s user interface could enhance or
harm novice programmer metacognition. Previous work shows that a system providing enhanced
feedback specifically targeted at novice programmers can increase efficacy [34, 89] and metacog-
nitive behaviors [87]. Some participants in our study used Copilot to move past metacognitive
difficulties by “rubber ducking,” but this seems to be an uncommon behavior that could be better
supported through the interface itself. As shown in Figures ?? and ??, Copilot manifests its sug-
gestions as a single line or entire blocks of gray text. Scaffolding the user’s movement through
the problem solving process could involve providing an unobtrusive UI element directly above
the suggested code to allow users to cycle through different code suggestions. Copilot is already
capable of obtaining multiple suggestions per input prompt, however, it can benefit from explicit,
discoverable UI that states howmany suggestions are available at a given point. This could encour-
age students to engage more in both the exploration and shepherding interaction patterns. Another
form of scaffolding could be Copilot generating only comments outlining the program’s general
structure, similar to subgoal labels [76].

5.5.3 Better Mental Models via Explainable AI. During the observation sessions, participants
were often confused by Copilot’s code generation capabilities and the code that it generated. Simi-
larly, during the interviews participants in our study worried that Copilot would generate working
code they could not understand. There is a need for systems like Copilot to help the user under-
stand what it’s doing and this could be especially effective for novice programmers. Explainable
AI (XAI) is the idea that AI systems and the decisions those systems make should be understand-
able by people. Although XAI has been studied by researchers for nearly 40 years [26], it is in-
creasing in importance as modern machine learning becomes more frequent in our daily lives [62].
While most work in this area focuses on the algorithms, HCI researchers have called for more
studies on how it impacts the humans using or benefiting from these AI systems [1]. According to
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Wang et al., the way humans reason informs XAI techniques [105]. They suggest design techniques
for XAI that include supporting hypothesis generation and supporting forward (data-driven) rea-
soning. These are ideal for LLM-powered systems like Copilot because users are engaged in a
cyclical pattern of writing code, reading Copilot’s auto-generated suggestions, and either accept-
ing or rejecting those suggestions. During this cycle, users are building a mental model of how
Copilot works and this informs how they will attempt to utilize Copilot next. Since precise prompt
creation to LLMs may become an increasingly important tool (much like “Googling” is today), we
argue it is important to utilize user-centered XAI design techniques when exposing the model to
users. Therefore, we recommend that systems like Copilot should help users see a little bit into
the black box, such as what it is using as input, a confidence value (or visualization), and its own
estimation of the skill level of the user. For example very recent products, notably OpenAI’s Chat-
GPT [78], have begun to present user interfaces that support conversational dialogue and thus are
ideally suited to explaining underlying decisions to users.

5.5.4 Ethical Design. The current legal controversy regarding code reuse and licensing (see
Section 5.4.2) arises from the fact that code generator models are trained on repositories of code
that may be covered by licenses that dictate their use. They are prone to generating code that may
be identical to portions of code from this training data. This can be a problem in cases where well
meaning users are shown such code suggestions but without the corresponding license or link
to the source repository. Indeed, there exist numerous reports of users engineering prompts to
Copilot that guide it toward producing large sections of code from licensed repositories without
appropriate attribution. Unintentionally, developers may create projects that contain fragments of
code with incompatible licenses.
AI code generators can be designed to address this problem by better signaling to users when

generated codematches an existing source, or hiding suggestions that may not meet a user-defined
criteria around license use. For example, early versions of GitHub Copilot included a filter that
was able to detect when code suggestions matched public code from GitHub. Users could choose
to enable this filter, in which case matches or near matches would not be shown as suggestions.
Planned versions of Copilot, scheduled for release in 2023, will include references to source code
repositories when they contain code that matches suggestions [93]. Although certain fragments of
code are likely to appear across multiple repositories, code generator tools can link to authoritative
sources by filtering based on the date on which code was committed. Such design features may
help educators in their efforts to teach students about ethical code reuse, and assist students in
better citing sources for their work in the case that generated code is not novel.

5.6 Limitations

There are multiple limitations to this work. First, we did not record screens or audio due to IRB
considerations. However, we believe that the observations of what students did, combined with
the transcribed interviews, is sufficient to understand their interactions with the user interface
at an informative level. Second, some of the conditions of the study were more like a lab-based
experience and not like how students normally solve their in-class programming assignments. We
attempted to mitigate this as much as possible (see Section 3.2), but this may have affected the
way participants worked and interacted with the tool. Third, although there are multiple code-
generating tools now available, we only looked at Copilot. This is because it was the only easily
available such tool at the time of data collection. Finally, this study took place at the end of April
2022. The release of Copilot on March 29, 2022, did not leave much time to conduct a complex,
multi-channel data collection. We moved quickly to uncover early findings on the potential impli-
cations of this technology in introductory programming courses. During this study, all of these
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experiences were novel to our students. By the time of writing, even if we had not conducted this
study, it is likely that many of our students would have been exposed to Copilot through other
means. Novelty effects will wear off over time. Our results reflect actions and thoughts that occur
when students are first exposed to Copilot.

5.7 Future Work

There are many interesting avenues for future work. For example, studying longer term student
use of Copilot, e.g., over a full semester to understand if and how interaction with Copilot evolves
over time and as students become more skilled in programming. Additionally, future work should
seek to understand the reasons behind some of the observations we made. For example, whether
having the code suggestions visible all the time leads to increased cognitive load, which could
explain why students were frustrated—andwhy prior studies withmore experienced programmers
have not reported similar findings. Altogether, we see it as very important to examine howAI code
generators can most effectively be incorporated into introductory programming classrooms.

6 CONCLUSION

In this work we provide the first exploration of Copilot use by novices in an introductory pro-
gramming (CS1) class on a typical novice programming task through observations and interviews.
We found that novices struggle to understand and use Copilot, are wary about the implications of
such tools, but are optimistic about integrating the tool more fully into their future development
work. We also observed two novel interaction patterns, explored the ethical implications of our
results, and presented design implications. These insights are important for integrating AI code
generators into the introductory programming sequence and for designing more usable tools for
novice users to solve issues related to helping them get “unstuck” in programming tasks at scale.
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