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With thanks to Vince Conitzer for some slides and figures and thanks to Kris Hauser for many slides

What is Search?
• Search is a basic problem-solving method

• We start in an initial state
• We examine states that are (usually) connected by a 

sequence of actions to the initial state

• Note:  Search is (usually) a thought experiment 
(separate topic:  Real Time Search)

• We aim to find a solution, which is a sequence of actions 
that brings us from the initial state to the goal state, 
possibly minimizing cost
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Search vs. Web Search

• When we issue a search query using Google, does Google 
really go poking around the web for us?

• Not in real time!
• Google spiders the web continually, caches results
• Uses page rank algorithm (a simple eigenvector problem) to 

find the most “popular” web pages that are consistent with 
your query

• Modern Google search also uses more advanced AI methods

Overview

•Problem Formulation

•Uninformed Search – constant cost
• DFS, BFS, IDDFS, etc.

•Non-constant cost
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Problem Formulation

• Components of a search problem
• State space & initial state
• Actions
• Goal Test
• Edge costs (cost of moving from one state to another upon taking an action)

• May be constant or varying per edge (initially we assume constant)
• Assumed to be > 0

• Optimal solution = lowest path cost to goal

Example: Path Planning, e.g. Google Maps
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Other Search Problems

• Drug design
• Logistics
• Route planning
• Tour Planning

• Assembly sequencing
• Internet routing
• Robot motion/path planning

Robot Path Planning

What is the state space?
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Formulation #1

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = sqrt(2)

Optimal Discretized Solution

This path is the shortest in the discretized state 
space, but not in the original continuous space
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Formulation #2

Cost of one step: length of segment

Formulation #2

Cost of one step: length of segment

Visibility graph
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Solution Path

13

The shortest path in this state space is also the 
shortest in the original continuous space 

Take Home Points

• States = modeling choice about the world

• Trade offs often exist:
• Example 1: Discretization is easy to work with, but optimal 

solution to may be suboptimal in the real world
• Example 2: More clever representations may require ingenuity 

to discover, or use, but may have benefits in real world

• Always keep modeling and solving distinct in your head
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Basic Search Concepts (with more precision/detail)

• Search tree: Internal representation of our progress
• Nodes: Places in search tree (states exist in the problem space) 
• Actions:  Connect states to next states (nodes to nodes)
• Expansion: Generation of next states (nodes)
• Arc cost: Cost of moving from one state to another
• Frontier: Set of nodes visited, but not expanded
• Branching factor:  Max no. of successors = b
• Goal depth:  Depth of shallowest goal = d (root is depth 0, possibility of 

multiple goal states!)

Example: 8-Puzzle
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State: Arrangement of 8 numbered tiles & empty tile on a 3x3 board
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15-Puzzle
• Introduced (?) in 1878 by Sam Loyd, who 

dubbed himself “America’s greatest puzzle-
expert”

17

15-Puzzle
• Sam Loyd offered $1,000 of his own money to 

the first person who would solve the following 
problem:
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How big is the state space of the (n2-1)-puzzle?

• 8-puzzle à 9! = 362,880 states
• 15-puzzle à 16! ~ 2.09 x 1013 states
• 24-puzzle à 25! ~ 1025 states

• But only half of these states are reachable from any given state
(and you may not know that in advance)

No one ever won the prize !!
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Searching the State Space

• Often infeasible (or too expensive) to build complete 
representation of the state graph

• Key difference from algorithms class (230/330), where it is 
typically assumed that graph fits in memory

8-, 15-, 24-Puzzles
          8-puzzle à 362,880 states

            15-puzzle à 2.09 x 1013 states

24-puzzle à 1025 states

100 million states/sec

0.036 sec

~ 55 hours

> 109 years
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Intractability

• Constructing the full state graph is intractable 
for many interesting problems
• n-puzzle: (n+1)! states

Tractability of search hinges on the ability to explore only a 
tiny portion of the state graph!

Searching the State Space

Search tree
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Searching the State Space

Search tree

Searching the State Space

Search tree
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Searching the State Space

Search tree

Searching the State Space

Search tree
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Searching the State Space

Search tree

Keeping things clear in your mind

• State space:
• Can always be represented with a graph showing 

connections between states
• State space may also be a tree
• Nodes correspond to states (one to one)

• Search tree:
• Always a tree
• Nodes in search tree (search nodes) point to states
• Same state could appear at multiple nodes in the 

search tree (but we try to avoid that)
Search tree
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Search Nodes and States (8-puzzle example)
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If states are allowed to be revisited,
the search tree may be infinite even

when the state space is finite

Data Structure of a Node

PARENT-NODE
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STATE

Depth of a node N  = length of path from root to N 

(depth of the root = 0) 

BOOKKEEPING

5Path-Cost

5Depth
RightAction

Expanded yes
...

CHILDREN

Note: This slide is application/language/
implementation agnostic. Not all
potential attributes of a node
are needed in all cases.
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Implementation
• Implementation of node data structure depends upon

• Implementation
• Programming language
• Information expected by user

• Example 1: If all you care about is minimizing the number of steps, there is 
no need to store cost (since cost = depth)

• Example 2: Can return path to goal (sequence of states) associated with 
solution by storing path to reach a node as part of the node data structure

• Example 3: Can avoid storing path explicitly, but reconstruct it using links 
from nodes to their parents.

Node expansion
• The expansion of a node N of the search tree consists of:

• Evaluating the successor function on STATE(N)
• Generating a child node of N for each state returned by the 

successor function

• node generation ¹ node expansion

1

2

3 4

5 6

7

8

N

1

3

5 6

8

1

3

4

5 6

7

82

4 7
2

1

2

3 4

5 6

7

8



1/19/25

18

Frontier of Search Tree
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The frontier is the set of all search nodes that haven’t been expanded yet

Search Strategy

• The frontier is the set of all search nodes that haven’t been expanded yet 

• Implemented as a (priority) queue FRONTIER
• INSERT(node, FRONTIER)
• REMOVE(FRONTIER)

• The ordering of the nodes in FRONTIER defines the search strategy
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Generic Tree Search
(assumes state space is a tree)

TREE-SEARCH(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node, FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5.  N ß REMOVE(FRONTIER)
6.  s ß STATE(N)
7.  For every state s’ in SUCCESSORS(s)
8.  Create a new node N’ as a child of N
9.  If GOAL?(s’) then return path or goal state
10. INSERT(N’, FRONTIER)

Expansion of N

Solution to the Search Problem
§ A solution is a path connecting 

the initial node to a goal node 
(any goal)

§ The cost of a path is the sum 
of the arc costs along this path

§ An optimal solution is a 
solution path of minimum cost

§ There might be 
no solution ! S

G

Recall: Typically assume costs > 0
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Algorithm Performance Measures

• Completeness:
• Does it find a solution when one exists?

• Optimality:
• Does it return a min cost path whenever solution exists?

• Complexity (space or time):
• Resources required by the algorithm

Breadth-First Search

•   FRONTIER is a FIFO Queue

2 3

4 5

1

6 7

FRONTIER = (1)

Note: Typically assume that ties broken in left-to right order.
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Breadth-First Search

•   FRONTIER is a FIFO Queue

FRONTIER = (2, 3)2 3

4 5

1

6 7

Breadth-First Search

•   FRONTIER is a FIFO Queue

FRONTIER = (3, 4, 5)2 3

4 5

1

6 7
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Breadth-First Search

•   FRONTIER is a FIFO Queue

FRONTIER = (4, 5, 6, 7)2 3

4 5

1

6 7

BFS Properties

• Assume
• Branching factor: b
• Depth of shallowest goal: d

• Completeness:
• Optimality:
• Time complexity (nodes generated):
• Space complexity:

Y
(Y for constant cost, N for variable cost)

O(bd)
O(bd)

1

1

10
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How bad is exponential in d?

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Bi-directional BFS

!!!!

€ 

bd /2 + bd /2 << bd

image from cs-alb-pc3.massey.ac.nz/notes/59302/fig03.17.gif 



1/19/25

24

Issues with Bi-directional BFS

• Uniqueness of goal
• Suppose goal is parking your car at airport
• Huge no. of possible goal states

• Configurations of other vehicles
• Which space you use

• Invertability of actions (can the successor function be inverted easily?)

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

FRONTIER = (1)
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Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

FRONTIER = (2, 3)

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

FRONTIER = (4, 5, 3)
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Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5
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Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5
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Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5
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Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5
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DFS Properties

• Completeness:
• Optimality:
• Time complexity:
• Space complexity:

(Y for finite trees, N for infinite trees)

N (Can you think of an example?)

O(bm) (m = depth we hit, m>d?)

O(bm) (bounded for trees)

Iterative Deepening (IDS or IDDFS)

• Want:
• DFS memory requirements
• BFS optimality, completeness

• Idea:
• Do a depth-limited DFS for depth m
• Iterate over m
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Iterative Deepening

Note: The IDDFS slides are animated, showing DFS running down to the red line on each slide. 

Iterative Deepening
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Iterative Deepening

IDDFS Properties

• Completeness:
• Optimality:
• Time complexity:
• Space complexity:

Y

(whenever BFS is optimal)

O(bd+1)

O(bd)
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Proof:  Assume the tree bottoms out at depth d, BFS generates:

In the worst case, IDDFS does no more than:

IDDFS vs. BFS
Theorem:  IDDFS generates no more than twice as many nodes  for a binary tree as BFS.

What about b-ary trees? IDDFS relative cost is lower!
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1 = 2 2$%& − 1 − 𝑑 + 1 < 2 2$%& − 1 < 2×𝐵𝐹𝑆(𝑑)

𝐵𝐹𝑆 𝑑 = 2$%& − 1

Non-constant Costs

• Arcs between states can have variable costs

• The cost of the path to each node N is g(N) = S costs of arcs from root to N

• Breadth-first is no longer optimal with variable arc costs!

1

1

10
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Uniform-Cost Search (UCS)
• Expand node in FRONTIER with the cheapest path so far
• Frontier is a priority queue prioritized on g(N)
• Needs one more fix to be optimal
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Suboptimal path!

(how to fix this?)

Search Algorithm #2
TREE-SEARCH2(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5.  N ß REMOVE(FRONTIER)
6.  s ß STATE(N)
7.  If GOAL?(s) then return path or goal state
8.  For every state s’ in SUCCESSORS(s)
9.  Create a new node N’ as a child of N
10.  INSERT(N’,FRONTIER)

73

The goal test is applied
to a node when this node is
expanded, not when it is
generated.

Now, UCS is optimal!
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Avoiding Revisited States

•  Requires comparing state descriptions 
•  Applied to breadth-first search: 
• Store all states associated with generated nodes in VISITED
• If the state of a new node is in VISITED, then discard the node

Implemented as hash-table (e.g. python dictionary) 
or as some other explicit data structure

Avoiding Revisited States in DFS

•  Depth-first search: 
• Solution 1 (similar to BFS approach):

• Store all states in current path in VISITED
• If the state of a new node is in VISITED, then discard the node
• Only avoids loops

• Solution 2:
• Store all generated states in VISITED
• If the state of a new node is in VISITED, then discard the node
• Avoids ever revisiting the same state twice
• Same space complexity as breadth-first !
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Avoiding Revisited States in UCS

• UCS property: For any state S, when the first node N such that 
STATE(N) = S is expanded, the path to N is the best path from the 
initial state to S (i.e., true for all states, not just goal state)

• So:
• When a node is expanded, store its state into VISITED
• When a new node N is generated:

• If STATE(N) is in VISITED, discard N
• If there exists a node N’ in the frontier such that STATE(N’) = STATE(N), discard the node -

- N or N’ – w/highest cost (i.e., it’s possible we found a shortcut to a node already in the 
frontier, but not yet expanded)

Search Algorithm #3
GRAPH-SEARCH(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5.  N ß REMOVE(FRONTIER)
6.  s ß STATE(N)
7.  Add s to VISITED
7.  If GOAL?(s) then return path and/or goal state
8.  For every state s’ in SUCCESSORS(s)
9.     Create a new node N’ as a child of N
10.          If s’ is in VISITED then discard N’
11.          else if there is N’’ in FRONTIER with STATE(N’)=STATE(N’’) and g(N’’) <= g(N’) then discard N’ 
12.                 else INSERT(N’,FRONTIER)
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Uninformed Search Summary

• Many variations on same basic algorithm

• Key differences:
• How frontier is implemented (FIFO, LIFO, priority queue)
• When goal test is applied
• Whether and how assiduously visited list is maintained

• Big impact on:
• Completeness
• Optimality
• Complexity


