
1/19/25

1

CompSci 370
Uninformed Search

Ron Parr
Department of Computer Science

Duke University

With thanks to Vince Conitzer for some slides and figures and thanks to Kris Hauser for many slides

What is Search?
• Search is a basic problem-solving method

• We start in an initial state
• We examine states that are (usually) connected by a

sequence of actions to the initial state

• Note: Search is (usually) a thought experiment
(separate topic: Real Time Search)

• We aim to find a solution, which is a sequence of actions
that brings us from the initial state to the goal state,
possibly minimizing cost

1/19/25

2

Search vs. Web Search

• When we issue a search query using Google, does Google
really go poking around the web for us?

• Not in real time!
• Google spiders the web continually, caches results
• Uses page rank algorithm (a simple eigenvector problem) to

find the most “popular” web pages that are consistent with
your query

• Modern Google search also uses more advanced AI methods

Overview

•Problem Formulation

•Uninformed Search – constant cost
• DFS, BFS, IDDFS, etc.

•Non-constant cost

1/19/25

3

Problem Formulation

• Components of a search problem
• State space & initial state
• Actions
• Goal Test
• Edge costs (cost of moving from one state to another upon taking an action)

• May be constant or varying per edge (initially we assume constant)
• Assumed to be > 0

• Optimal solution = lowest path cost to goal

Example: Path Planning, e.g. Google Maps

1

2

1

1

1

3

3

2
1

1

2

1

Start

Goal

Find shortest source to destination using available roads

1/19/25

4

Other Search Problems

• Drug design
• Logistics
• Route planning
• Tour Planning

• Assembly sequencing
• Internet routing
• Robot motion/path planning

Robot Path Planning

What is the state space?

1/19/25

5

Formulation #1

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = sqrt(2)

Optimal Discretized Solution

This path is the shortest in the discretized state
space, but not in the original continuous space

1/19/25

6

Formulation #2

Cost of one step: length of segment

Formulation #2

Cost of one step: length of segment

Visibility graph

1/19/25

7

Solution Path

13

The shortest path in this state space is also the
shortest in the original continuous space

Take Home Points

• States = modeling choice about the world

• Trade offs often exist:
• Example 1: Discretization is easy to work with, but optimal

solution to may be suboptimal in the real world
• Example 2: More clever representations may require ingenuity

to discover, or use, but may have benefits in real world

• Always keep modeling and solving distinct in your head

1/19/25

8

Basic Search Concepts (with more precision/detail)

• Search tree: Internal representation of our progress
• Nodes: Places in search tree (states exist in the problem space)
• Actions: Connect states to next states (nodes to nodes)
• Expansion: Generation of next states (nodes)
• Arc cost: Cost of moving from one state to another
• Frontier: Set of nodes visited, but not expanded
• Branching factor: Max no. of successors = b
• Goal depth: Depth of shallowest goal = d (root is depth 0, possibility of

multiple goal states!)

Example: 8-Puzzle

1

2

3 4

5 6

7

8 1 2 3

4 5 6

7 8

Initial state Goal state

State: Arrangement of 8 numbered tiles & empty tile on a 3x3 board

1/19/25

9

15-Puzzle
• Introduced (?) in 1878 by Sam Loyd, who

dubbed himself “America’s greatest puzzle-
expert”

17

15-Puzzle
• Sam Loyd offered $1,000 of his own money to

the first person who would solve the following
problem:

12

14

11

15

10

13

9

5 6 7 8

4321

12

15

11

14

10

13

9

5 6 7 8

4321

?

1/19/25

10

How big is the state space of the (n2-1)-puzzle?

• 8-puzzle à 9! = 362,880 states
• 15-puzzle à 16! ~ 2.09 x 1013 states
• 24-puzzle à 25! ~ 1025 states

• But only half of these states are reachable from any given state
(and you may not know that in advance)

No one ever won the prize !!

1/19/25

11

Searching the State Space

• Often infeasible (or too expensive) to build complete
representation of the state graph

• Key difference from algorithms class (230/330), where it is
typically assumed that graph fits in memory

8-, 15-, 24-Puzzles
 8-puzzle à 362,880 states

 15-puzzle à 2.09 x 1013 states

24-puzzle à 1025 states

100 million states/sec

0.036 sec

~ 55 hours

> 109 years

1/19/25

12

Intractability

• Constructing the full state graph is intractable
for many interesting problems
• n-puzzle: (n+1)! states

Tractability of search hinges on the ability to explore only a
tiny portion of the state graph!

Searching the State Space

Search tree

1/19/25

13

Searching the State Space

Search tree

Searching the State Space

Search tree

1/19/25

14

Searching the State Space

Search tree

Searching the State Space

Search tree

1/19/25

15

Searching the State Space

Search tree

Keeping things clear in your mind

• State space:
• Can always be represented with a graph showing

connections between states
• State space may also be a tree
• Nodes correspond to states (one to one)

• Search tree:
• Always a tree
• Nodes in search tree (search nodes) point to states
• Same state could appear at multiple nodes in the

search tree (but we try to avoid that)
Search tree

1/19/25

16

Search Nodes and States (8-puzzle example)

8
3
5

2
4 7
1 6

8
3
5

2
4 7
1 6

8
3
5

2
4

7

1 6

8
3
5

2
4 7
1 6

8
3
5

24
7

1 6

8
3
5

2
4 7
1 6

If states are allowed to be revisited,
the search tree may be infinite even

when the state space is finite

Data Structure of a Node

PARENT-NODE

8
3
5

2
4 7
1 6

STATE

Depth of a node N = length of path from root to N

(depth of the root = 0)

BOOKKEEPING

5Path-Cost

5Depth
RightAction

Expanded yes
...

CHILDREN

Note: This slide is application/language/
implementation agnostic. Not all
potential attributes of a node
are needed in all cases.

1/19/25

17

Implementation
• Implementation of node data structure depends upon

• Implementation
• Programming language
• Information expected by user

• Example 1: If all you care about is minimizing the number of steps, there is
no need to store cost (since cost = depth)

• Example 2: Can return path to goal (sequence of states) associated with
solution by storing path to reach a node as part of the node data structure

• Example 3: Can avoid storing path explicitly, but reconstruct it using links
from nodes to their parents.

Node expansion
• The expansion of a node N of the search tree consists of:

• Evaluating the successor function on STATE(N)
• Generating a child node of N for each state returned by the

successor function

• node generation ¹ node expansion

1

2

3 4

5 6

7

8

N

1

3

5 6

8

1

3

4

5 6

7

82

4 7
2

1

2

3 4

5 6

7

8

1/19/25

18

Frontier of Search Tree

8
3
5

2
4 7
1 6

8
3
5

2
4 7
1 6

8
3
5

2
4

7

1 6

8
3
5

2
4 7
1 6

8
3
5

72
4

1 6

8
3
5

2
4 7
1 6

The frontier is the set of all search nodes that haven’t been expanded yet

Search Strategy

• The frontier is the set of all search nodes that haven’t been expanded yet

• Implemented as a (priority) queue FRONTIER
• INSERT(node, FRONTIER)
• REMOVE(FRONTIER)

• The ordering of the nodes in FRONTIER defines the search strategy

1/19/25

19

Generic Tree Search
(assumes state space is a tree)

TREE-SEARCH(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node, FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5. N ß REMOVE(FRONTIER)
6. s ß STATE(N)
7. For every state s’ in SUCCESSORS(s)
8. Create a new node N’ as a child of N
9. If GOAL?(s’) then return path or goal state
10. INSERT(N’, FRONTIER)

Expansion of N

Solution to the Search Problem
§ A solution is a path connecting

the initial node to a goal node
(any goal)

§ The cost of a path is the sum
of the arc costs along this path

§ An optimal solution is a
solution path of minimum cost

§ There might be
no solution ! S

G

Recall: Typically assume costs > 0

1/19/25

20

Algorithm Performance Measures

• Completeness:
• Does it find a solution when one exists?

• Optimality:
• Does it return a min cost path whenever solution exists?

• Complexity (space or time):
• Resources required by the algorithm

Breadth-First Search

• FRONTIER is a FIFO Queue

2 3

4 5

1

6 7

FRONTIER = (1)

Note: Typically assume that ties broken in left-to right order.

1/19/25

21

Breadth-First Search

• FRONTIER is a FIFO Queue

FRONTIER = (2, 3)2 3

4 5

1

6 7

Breadth-First Search

• FRONTIER is a FIFO Queue

FRONTIER = (3, 4, 5)2 3

4 5

1

6 7

1/19/25

22

Breadth-First Search

• FRONTIER is a FIFO Queue

FRONTIER = (4, 5, 6, 7)2 3

4 5

1

6 7

BFS Properties

• Assume
• Branching factor: b
• Depth of shallowest goal: d

• Completeness:
• Optimality:
• Time complexity (nodes generated):
• Space complexity:

Y
(Y for constant cost, N for variable cost)

O(bd)
O(bd)

1

1

10

1/19/25

23

How bad is exponential in d?

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Bi-directional BFS

!!!!

€

bd /2 + bd /2 << bd

image from cs-alb-pc3.massey.ac.nz/notes/59302/fig03.17.gif

1/19/25

24

Issues with Bi-directional BFS

• Uniqueness of goal
• Suppose goal is parking your car at airport
• Huge no. of possible goal states

• Configurations of other vehicles
• Which space you use

• Invertability of actions (can the successor function be inverted easily?)

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

FRONTIER = (1)

1/19/25

25

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

FRONTIER = (2, 3)

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

FRONTIER = (4, 5, 3)

1/19/25

26

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

1/19/25

27

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

1/19/25

28

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

1/19/25

29

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

1/19/25

30

DFS Properties

• Completeness:
• Optimality:
• Time complexity:
• Space complexity:

(Y for finite trees, N for infinite trees)

N (Can you think of an example?)

O(bm) (m = depth we hit, m>d?)

O(bm) (bounded for trees)

Iterative Deepening (IDS or IDDFS)

• Want:
• DFS memory requirements
• BFS optimality, completeness

• Idea:
• Do a depth-limited DFS for depth m
• Iterate over m

1/19/25

31

Iterative Deepening

Note: The IDDFS slides are animated, showing DFS running down to the red line on each slide.

Iterative Deepening

1/19/25

32

Iterative Deepening

IDDFS Properties

• Completeness:
• Optimality:
• Time complexity:
• Space complexity:

Y

(whenever BFS is optimal)

O(bd+1)

O(bd)

1/19/25

33

Proof: Assume the tree bottoms out at depth d, BFS generates:

In the worst case, IDDFS does no more than:

IDDFS vs. BFS
Theorem: IDDFS generates no more than twice as many nodes for a binary tree as BFS.

What about b-ary trees? IDDFS relative cost is lower!

!
!"#

$

2!%& − 1 = 2!
!"#

$

2! −!
!"#

$

1 = 2 2$%& − 1 − 𝑑 + 1 < 2 2$%& − 1 < 2×𝐵𝐹𝑆(𝑑)

𝐵𝐹𝑆 𝑑 = 2$%& − 1

Non-constant Costs

• Arcs between states can have variable costs

• The cost of the path to each node N is g(N) = S costs of arcs from root to N

• Breadth-first is no longer optimal with variable arc costs!

1

1

10

1/19/25

34

Uniform-Cost Search (UCS)
• Expand node in FRONTIER with the cheapest path so far
• Frontier is a priority queue prioritized on g(N)
• Needs one more fix to be optimal

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

Suboptimal path!

(how to fix this?)

Search Algorithm #2
TREE-SEARCH2(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5. N ß REMOVE(FRONTIER)
6. s ß STATE(N)
7. If GOAL?(s) then return path or goal state
8. For every state s’ in SUCCESSORS(s)
9. Create a new node N’ as a child of N
10. INSERT(N’,FRONTIER)

73

The goal test is applied
to a node when this node is
expanded, not when it is
generated.

Now, UCS is optimal!

1/19/25

35

Avoiding Revisited States

• Requires comparing state descriptions
• Applied to breadth-first search:
• Store all states associated with generated nodes in VISITED
• If the state of a new node is in VISITED, then discard the node

Implemented as hash-table (e.g. python dictionary)
or as some other explicit data structure

Avoiding Revisited States in DFS

• Depth-first search:
• Solution 1 (similar to BFS approach):

• Store all states in current path in VISITED
• If the state of a new node is in VISITED, then discard the node
• Only avoids loops

• Solution 2:
• Store all generated states in VISITED
• If the state of a new node is in VISITED, then discard the node
• Avoids ever revisiting the same state twice
• Same space complexity as breadth-first !

1/19/25

36

Avoiding Revisited States in UCS

• UCS property: For any state S, when the first node N such that
STATE(N) = S is expanded, the path to N is the best path from the
initial state to S (i.e., true for all states, not just goal state)

• So:
• When a node is expanded, store its state into VISITED
• When a new node N is generated:

• If STATE(N) is in VISITED, discard N
• If there exists a node N’ in the frontier such that STATE(N’) = STATE(N), discard the node -

- N or N’ – w/highest cost (i.e., it’s possible we found a shortcut to a node already in the
frontier, but not yet expanded)

Search Algorithm #3
GRAPH-SEARCH(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5. N ß REMOVE(FRONTIER)
6. s ß STATE(N)
7. Add s to VISITED
7. If GOAL?(s) then return path and/or goal state
8. For every state s’ in SUCCESSORS(s)
9. Create a new node N’ as a child of N
10. If s’ is in VISITED then discard N’
11. else if there is N’’ in FRONTIER with STATE(N’)=STATE(N’’) and g(N’’) <= g(N’) then discard N’
12. else INSERT(N’,FRONTIER)

1/19/25

37

Uninformed Search Summary

• Many variations on same basic algorithm

• Key differences:
• How frontier is implemented (FIFO, LIFO, priority queue)
• When goal test is applied
• Whether and how assiduously visited list is maintained

• Big impact on:
• Completeness
• Optimality
• Complexity

