COMPSCI 534D: Computational Complexity

Department of Computer Science

Duke University

John H. Reif
   Spring Semester, 2025

 

 

 

 

 

 

Schedule:

Class 

Date 

Topics 

Primary

Lecture

Notes 

Secondary

Lecture

Notes 

Primary

Textbook

Readings 

Secondary Textbook

Readings 

0

Thurs Jan 9

By TA

 

 

Overview of Course

By TA

 

Detailed Description of Course Material: see Schedule

[T, Ch1]

[AB, Intro]

[AB, Ch 1]

[G, Ch1]

 

[HMU, Ch 8]

1

Tues

Jan 14

Homework #1 Assigned

 

 

Brief Review of Formal Language Theory

Finite State Automata & Regular Expressions

Non-Determinism in Automata

Push Down Automata &  Context Free Languages

 

Introduction to TMs:

Deterministic Turing Machines
Church Turing Hypothesis

Turing Machine Variations Non-Deterministic TMs

Turing Machines & Variations:

[Umans pdf]

[Bulatov pdf]

[Busch pdf]

 

 

Turing Machine Variations: [Busch pdf]

 

[Arora]

[Beame]

[Spielman]

[Trevisan]

 

Mechanical Turing Machines

-       Using electro-mechanics

-       Using wooden gears

 

[T, Ch1]

[AB, Intro]

[AB, Ch 1]

[G, Ch1]

 

[HMU, Ch 8]

2

Weds

Jan 15

 

Universal Turing Machines

 

Countable and Uncountable Sets

 

Decidable and Undecidable Languages

 

Diagonalization Proofs

Decidability Reductions: [Busch pdf] 

Universal Turing Machine & Noncountable Sets: [Busch pdf] 

Undecidable Languages: [Busch pdf] 

 

Undecidability of Halting Problem:

[Umans pdf]

 

Undecidability Reductions: [Busch pdf] 

 

 

 

 

3

Thurs

Jan 16

Time and Space Complexity:

- Complexity Classes

-Deterministic Time

-Space Complexity

-Constant Space Compression

-Constant Time Speedup

-Time and Space Hierarchy Theorems

 

 

Intro to Time Complexity & Complexity Classes: [Umans pdf]

 

Constant Time Speedup: [Umans pdf]

[T, Ch3, p13-14]

 

Constant Space Compression:

[Umans pdf]

 ([AB, Ch 4, p 82-83])

 

 

 

More on Time Complexity: [Umans pdf] [Bulatov pdf]

Constant Time Speedup:

Time Complexity

 

More on Space Compression: [Busch pdf]

[Miltersen]

 

Tape Reduction & Time Hierarchy:

[Miltersen]

 

[T, Ch2]

[T, Ch3, p13-14]

[AB, Ch 4]

[Pap,Ch7,8]

[Pap, Ch14] 

 

 

4

Tues, Jan 21

 

Nondeterminism and NP

 

- NonDeterministic TMs

 

- NonDeterministic Time Hierarchy

 

- Ladner’s Thm: If P≠ NP then NP Language neither NP complete nor in P

 

-Sparse Languages and NP

Nondeterministic Complexity and NP: [Umans pdf]

[Bulatov pdf]

 

NonDeterministic Time Hierarchy: [Umans pdf]

[AB, Ch 4, p 84-85]

 

Sparse Languages and NP: [Umans pdf]

Ladner’s Thm: a Problem in P not NP-Complete [Umans pdf]

[AB, Ch 4, p 85-87]

 

More on NonDeterministic Time Hierarchy: [Bulatov pdf]

 

[Arora], [Arora]

[Spielman]

 

[T, Ch4]

 

[G, Ch4]

 

5

Weds

Jan 22

 

P and NP-Completeness:

Polytime Reductions

Logspace Reductions

Completeness

P, NP, NP-Completeness
Cook-Levin Theorem and 3SAT

NP-Completeness via Reductions
coNP, EXPTIME, NEXPTIME

Reduction & Completeness Defined: [Umans pdf] [AB, Ch 2]

P Completeness: [Umans pdf]

NP Completeness of SAT: [Busch pdf]

Reduction Proofs of NP Completeness: [Busch pdf]

More on NP Completeness of SAT: [Bulatov pdf]

Further  Reduction Proofs of NP Completeness: 

[Bulatov pdf]

[Bulatov pdf]

[Bulatov pdf]

 

[T, Ch5]

[T, Ch7]

[T, Ch8] 

[Arora]

[Spielman]

 

EXP Completeness: [Umans pdf]

[G, Ch2]
[Pap, Ch9]

[G, AppA]

[GJ, Ch3,4]

[HMU, Ch10]

6

Thurs

Jan 23

 

 

Oracles & Relativized Proof Techniques

Oracle Turing Machines
Relativized Proofs

 

Oracles & Relativized Proof Techniques

Oracle Turing Machines
Relativized Proofs

[Umans pdf]

[AB, Ch 4, p 88-92]

 

More on Oracles & Relativized Proof Techniques

[Arora, p3-4] [Spielman, p1-2]

 

 

7

Tues

Jan 28

Project Abstract & Short List of References Due (1 page)

 

 

 

 

 

Polynomial Hierarchy (PH):
Alternation

Properties of PH
Oracle Characterization of PH

 

PSPACE Complete Problems:

Quantified Boolean Logic

Complexity of 2 Player Games

 

 

PSPACE [Fu pdf]

 

Polynomial Hierarchy & PSPACE:

[Umans pdf]

[Arora]

 

PSPACE Complete Problems:

 [AB, Ch 3]

 

Space Complexity: [Umans pdf] [Bulatov pdf] [Miltersen]

 

Nondeterministic Space: [Bulatov pdf] [Umans pdf]

[Arora]

 

Nondeterministic Log Space(NL): [Bulatov pdf] [Miltersen]

 

IS Theorem: NL=coNL:[Umans pdf]

 

Optional:

[Trevisan]

[Trevisan]

[Beame]

[Spielman]

[Miltersen]

[Miltersen]

 

[Trevisan]

[Spielman]

Optional: Time-Space Tradeoffs [Beame] [Miltersen]

[AB, Ch 4]

 


8

Weds

Jan 29

 

 

 

Nondeterministic Space Complexity:
PSPACE Completeness

Savitch’s proof PSPACE=NPSPACE
NSPACE=coNSPACE 

L, NL, Logspace Reductions

 

Nondeterministic Log Space(NL):

 

IS Theorem: NL=coNL:

 

PSPACE [Fu pdf]

 

Polynomial Hierarchy & PSPACE:

[Umans pdf]

[Arora]

 

PSPACE Complete Problems:

 [AB, Ch 3]

 

Nondeterministic Space Complexity: [Umans pdf]

 

 

Nondeterministic Space: [Bulatov pdf] [Umans pdf]

[Arora]

 

Nondeterministic Log Space(NL): [Bulatov pdf] [Miltersen]

 

IS Theorem: NL=coNL:[Umans pdf]

 

Optional:

[Trevisan]

[Trevisan]

[Beame]

[Spielman]

[Miltersen]

[Miltersen]

 

[Trevisan]

[Spielman]

Optional: Time-Space Tradeoffs [Beame] [Miltersen]

[AB, Ch 4]

 


9

Thurs

Jan 28

 

 

Kolmogorov Complexity

Definitions

Incompressibility for lowerbounds

Kolmogorov Complexity (KC)

 

Foundations of KC:

Intro to KC: [Li, pdf]

 

Lower Bounds by Incompressibility Method:  

[Li, pdf]

Average-case Analysis & Lower Bounds by Incompressibility Method: [Li] [Li, pdf]

Conditional KC: [Li, pdf]

 

Prefix KC & Universal Input Dist: [Li, pdf]

 

 

10

Quiz 1

Proctored by TA

Tues Feb 4

 

 

Project Summary, Introduction, and Outline Due (3 pages)

 

Homework #1 Due

 

Homework #2 Assigned

 

Quiz 1 on Computability & Classical Complexity Theory:

- Diagonalization

- Undecidability

-Speedup Theorem

-Complexity Classes: P, NP, Polynomial Hierarchy, NL, PSPACE, EXP

-Reductions

-Completeness Proofs

 

 

 

 

 

 

 

11

 

Tues

Feb 11

 

Parallel Computational Complexity:

Circuit Complexity & NC:
P/poly, Logspace uniform classes

Can P/poly resolve P versus NP?

P-Completeness and Linear Programming

Log-depth Circuits, NC
Relation of NC to Parallel Computing

Examples of NC parallel algorithms

Introduction to Circuit Complexity:

[Bulatov pdf]

[Umans pdf]

 

 

 

 

[Beame]

[Spielman]

 

 


12

 

Wends

Feb 12

 

 

 

 

Basic Circuit Constructions:

[Miltersen]

 

Circuit Lower Bounds:

Shannon’s Counting Argument, Formula lower bound on Andreev function,



 

Size Complexity of Circuits: [Trevisan]

 

 

Shannon’s Counting Argument:

[Spielman] (last page)

 [Umans pdf]

 

 

 

[Beame]

[Spielman]

 

More on Karp-Lipton Theorem

 [Arora]

[Spielman]

 

Formula lower bound on Andreev function: [Umans pdf]

 

 

[AB, Ch 6]

[G, Ch3]

[Pap, Ch11]

 

13

 

Thurs

Feb 13

 

 

 

 


Karp-Lipton Theorem on Circuits

 

 

 

Karp-Lipton Theorem

[Umans pdf]

[Beame]

[Spielman]

 

More on Karp-Lipton Theorem

 [Arora]

[Spielman]

 

Formula lower bound on Andreev function: [Umans pdf]

 

 

[AB, Ch 6]

[G, Ch3]

[Pap, Ch11]

 

14

 

Tues

Feb 18

Homework #2 Due

 

Homework #3 Assigned

 

 

Decision Tree Complexity:

Decision Trees

Adversaries

Certificate Complexity

Randomized Decision Trees

Distributional Complexity

Yao’s Lemma on Probabilistic Decision Trees

 

 

Decision Tree Complexity: [Arora]

 

 

 

 

Branching Programs

[Miltersen]

 

 

[AB, Ch 6]

[G, Ch3]

[Pap, Ch11]

 

         15

Wends

Feb 19

 

 

 

 

 

 

 

Lower Bounds for Poly Size Circuits with Unbounded Fan-in and Constant Depth:

 

Parity is not in AC0:

- Simple Proof for depth 2

- Hastad‘s proof for constant depth via switching lemma

 

L Parallel Computing

[Fu pdf]

 

 

Switching Lemma Proof that Parity is not in AC0:

[Trevisan]

[Arora]

 

 

 

Switching Lemma Primer:[Beame]

13.1 in [AB, Ch 13])

 

 

Other Notes on Switching Lemma Proof that Parity is not in AC0:

[Beame]

 

Alternative Polynomial Proof  Parity is not in AC0: [Trevisan]

 

Majority Circuits

[Miltersen]

 

Razborov's lower bound on monotone circuits for clique

[Umans pdf]

[Miltersen]

[Arora]

[Beame]

[Trevisan]

 

 

16

Thurs Feb 20

 

 

Randomized Complexity:

RP, BPP, ZPP
Examples of Probabilistic TMs

Error Reduction

BPP in P/poly

 

 

Proof of the Schwartz-Zippel Lemma

 

 

 

Randomness [Fu pdf]

 

Randomized Complexity Classes & Error Reduction:

[Umans pdf]

 [Arora]  

 

Polynomial Identity Testing + Schwartz-Zippel:

[Umans pdf]

[Reif]

[Bulatov pdf] [Bulatov pdf] [Beame]

[Spielman]

[Miltersen]

[Miltersen]

[Miltersen]

[Miltersen]

 

 

 

 

 

[AB, Ch 7]

[AB, Ch 11]

 [AB, Ch 13]

 

[G, Ch6] [G, AppB]

 

[Pap, Ch11]

[HMU, Ch11]

[G, AppD] 

17

Quiz 2

Proctored by TA

 

Tues

Feb 25

 

 

 

 

Quiz 2

- Kolmogorov Complexity

-Parallel Complexity

-Circuit Lower Bounds

-Decision Tree Complexity

 

 

 

 

 

18

 

Tues

March 4

 

Homework #3 Due

 

Homework #4 Assigned

 

 

 

 

 

Randomized Complexity, Cont:

 

Unique Sat:

The Valiant-Vazirani Theorem

 

Valiant-Vazirani Theorem for NP Problems with Unique solutions:

[Umans pdf]

 [Spielman]

 

 

More on Valiant-Vazirani Theorem:

[Trevisan]

 

 

[AB, Ch 11]

[G, Ch6]

 [HMU, Ch11]

[G, AppD] 

 

 

 

 

 

19

 

Weds

March 5

 

Counting Complexity Classes:

#P defined

Counting Cycle Covers and

Bipartite Matchings are #P Complete

Permanent is #P complete

 #P defined:

 [Umans pdf]

 

#P completeness of Counting Cycle Covers and Permanent:

[Beame]

[Arora]

More on Toda’s Theorem:

[Spielman]

[Beame]

[Miltersen]

 

More on #P completeness

[Miltersen]

[Miltersen]

 [Bulatov pdf] [Bulatov pdf] [Beame]

 [Spielman]

[Trevisan]

 [AB, Ch 8]

 

[G, Ch6]

 

 

 

 

 

 

20

 

Thurs

March 6

 

 

 

Pseudorandom Number Generation & Cryptography:

- One Way Functions
- Pseudorandom Number Generators
- Pseudorandom generation for BPP

 

Complexity & Encryption [Fu pdf]

 

Blum-Micali-Yao (BMY) Pseudorandom generator:

[Umans pdf]

[AB, Ch 10]

 

Impagliazzo’s hard-core set theorem and Yao’s XOR Lemma [O'Donnell] [AB, Ch 18]

Goldreich-Levin Hardcore Bit:

[Arora]

[Arora]

 

Nisan-Wigderson (NW)PseudoRandom Generator:

[Umans pdf]

[Trevisan]

[Miltersen]

[Miltersen]

[Miltersen]

Cryptography & Cryptography:

Trapdoor Functions, Cryptography
RSA and Discrete Log Cryptosystems

 

[Pap, Ch18] [AB, Ch 16]

 [G, Ch8]

[Pap, Ch11]

  [G, AppC]

Spring Break

March 11-17

 

 

 

 

 

 

 

 

 

21

Tues

March 18

 

Homework #4 Due

 

Homework #5 Assigned

 

 

Preliminary Draft Project Paper Due

 

 

 

Pseudorandom Number Generation & Cryptography, Cont:

 

- Goldreich-Levin hard bit

- Yao's Lemma

 

 

Blum-Micali-Yao (BMY)Pseudorandom generator using:

- Goldreich-Levin hard bit

- Yao's Lemma

[Umans pdf]

[AB, Ch 10]

 

 

 

 Intro to Hardness amplification & error correcting codes::  [Umans pdf]

-Transforming worst-case hardness into average-case hardness

- List decoding and its use for hardness

amplification

 

Randomness Extractors:

[Umans pdf]

 

 

 

[G, Ch7]

[G, AppE]

 

 

 

 

 

 

22

 

 

 

 

 

Wends

March 19

 

Interactive Proofs (IP):
Brief Overview of Zero Knowledge Proofs

-Interactive proofs of graph non-isomorphism
-Applications to Program Checking

-Author-Merlin Games

Proof IP = PSPACE

the classes MA and AM

Derandomization of MA and AM

[Bulatov pdf]

 

[Arora]

 

 

[Umans pdf]

 

[Miltersen]

[Miltersen]

 

[Beame]

[Beame]

[Beame]

 

[Spielman]

[Spielman]

[Spielman]

[AB, Ch 9]

[G, Ch9]

[Pap, Ch19]

 

        

 

 

        23

Thursday March 20

 

 

 

 

Probabilistically Checkable Proofs (PCP):

[Miltersen]

 

Hardness of Approximation:

Overview of Direct Proof of PCP Theorem:
Hardness of Approximating MAX-SAT

NP in PCP(poly(n),1)

[Umans pdf]

 

[Bulatov pdf]

 

 

[Umans pdf]

[Beame]

[Beame]

[Beame]

[Beame]

 

[Spielman]

[Spielman]

[Spielman]

[Spielman]

 

[Miltersen]

[Miltersen]

[Miltersen]

[AB, Ch 19]

[AB, Ch 20]

 

 

 

 

 

 

 

 

24

Tues

April 1

Homework #5 Due

 

Homework #6 Assigned

 

Introduction to

Communication Complexity

 

 

 

Deterministic and Randomized Communication Complexity:

[Umans pdf]

 

More on Communication Complexity:

[Woo]

[Arora]

 

 

Primality & One-Way

 Functions [Fu pdf]

 

[AB, Ch 12]
[Pap, Ch11]

 

 

 

 

 

      25

 

Wends April 2

 

 

 

Intro to Quantum

Computation

Qubits

Unitary Operations & Projections

Quantum Circuits

Quantum Algorithms

Quantum intro lectures:

[Spielman]

[Arora]

 

Quantum Complexity Classes:

[Spielman]

 

 

 

 [AB, Ch 21]

 

 

 

 

 

26

 

 

Thurs April 3

 

Quantum

Computation,

Continued

 -Quantum Search

-Quantum Factoring

 

 

Quantum Algorithms:

 

Grover's Quantum Algorithm for NP Search:

[Melkebeek]

 

Quantum Algorithms for Fourier Transform & Discrete Log:

[Spielman]

 

Additional:

 

More on Grover's Quantum Algorithm for NP Search:

[Spielman]

[Wiki]

 

Shor’s Quantum Algorithm for integer factorization:

[Wiki]

[Arora]

 

[AB, Ch 21]

 

27

Quiz 3

Proctored by TA

Tues April 8

 

Quiz 3

- Randomized Complexity

- Counting Complexity

- Pseudorandom Number Generation & Cryptography

-Interactive Proofs

- Quantum Computation

 

 

 

 

 

 

 

 

28

 

Tues

April 15

 

Homework #6 Due

Logic & Proof in complexity theory:  Why are complexity lower bounds so difficult?

- Natural proofs

 

Natural proofs:

[Aaronson]

[Umans pdf]

 

 

 More notes on Natural proofs:

[Arora]

 

[AB, Ch 23]

 [AB, Ch 22]

 

29

 

 

Wends

April 16

Independence in First Order Logics

 

Final Exam Review

[Fu pdf]

[Reif]

Independence in Logics:

[Aaronson]

[Aaronson Survey]

 

 

See Short Course Review: [Umans pdf]

 

 

 

 

Tues April 29

 

Final Project Paper Due: email pdf to jhreif@gmail.com

 

 

 

 

 

See Schedule of Final Exams

May 2

7:00PM – 9:00PM

 

Final Exam

 


Required Class Text Books: (digital text books [AB] and [G] used by permission)

Additional Readings in Complexity Theory: ([Tompa] used by permission)

Lecture Notes Credits: (all used by permission)

 

 

 

 

\