
Curated by Titus Winters,
Tom Manshreck & Hyrum Wright

Software
Engineering at
Google
Lessons Learned
from Programming
Over Time

1 Ben Collins-Sussman, also an author within this book.

CHAPTER 2

How to Work Well on Teams

Written by Brian Fitzpatrick
Edited by Riona MacNamara

Because this chapter is about the cultural and social aspects of software engineering at
Google, it makes sense to begin by focusing on the one variable over which you defi‐
nitely have control: you.

People are inherently imperfect—we like to say that humans are mostly a collection of
intermittent bugs. But before you can understand the bugs in your coworkers, you
need to understand the bugs in yourself. We’re going to ask you to think about your
own reactions, behaviors, and attitudes—and in return, we hope you gain some real
insight into how to become a more efficient and successful software engineer who
spends less energy dealing with people-related problems and more time writing great
code.

The critical idea in this chapter is that software development is a team endeavor. And
to succeed on an engineering team—or in any other creative collaboration—you need
to reorganize your behaviors around the core principles of humility, respect, and
trust.

Before we get ahead of ourselves, let’s begin by observing how software engineers
tend to behave in general.

Help Me Hide My Code
For the past 20 years, my colleague Ben1 and I have spoken at many programming
conferences. In 2006, we launched Google’s (now deprecated) open source Project

27

Hosting service, and at first, we used to get lots of questions and requests about the
product. But around mid-2008, we began to notice a trend in the sort of requests we
were getting:

“Can you please give Subversion on Google Code the ability to hide specific branches?”
“Can you make it possible to create open source projects that start out hidden to the
world and then are revealed when they’re ready?”
“Hi, I want to rewrite all my code from scratch, can you please wipe all the history?”

Can you spot a common theme to these requests?

The answer is insecurity. People are afraid of others seeing and judging their work in
progress. In one sense, insecurity is just a part of human nature—nobody likes to be
criticized, especially for things that aren’t finished. Recognizing this theme tipped us
off to a more general trend within software development: insecurity is actually a
symptom of a larger problem.

The Genius Myth
Many humans have the instinct to find and worship idols. For software engineers,
those might be Linus Torvalds, Guido Van Rossum, Bill Gates—all heroes who
changed the world with heroic feats. Linus wrote Linux by himself, right?

Actually, what Linus did was write just the beginnings of a proof-of-concept Unix-
like kernel and show it to an email list. That was no small accomplishment, and it was
definitely an impressive achievement, but it was just the tip of the iceberg. Linux is
hundreds of times bigger than that initial kernel and was developed by thousands of
smart people. Linus’ real achievement was to lead these people and coordinate their
work; Linux is the shining result not of his original idea, but of the collective labor of
the community. (And Unix itself was not entirely written by Ken Thompson and
Dennis Ritchie, but by a group of smart people at Bell Labs.)

On that same note, did Guido Van Rossum personally write all of Python? Certainly,
he wrote the first version. But hundreds of others were responsible for contributing
to subsequent versions, including ideas, features, and bug fixes. Steve Jobs led an
entire team that built the Macintosh, and although Bill Gates is known for writing a
BASIC interpreter for early home computers, his bigger achievement was building a
successful company around MS-DOS. Yet they all became leaders and symbols of the
collective achievements of their communities. The Genius Myth is the tendency that
we as humans need to ascribe the success of a team to a single person/leader.

And what about Michael Jordan?

It’s the same story. We idolized him, but the fact is that he didn’t win every basketball
game by himself. His true genius was in the way he worked with his team. The team’s
coach, Phil Jackson, was extremely clever, and his coaching techniques are legendary.

28 | Chapter 2: How to Work Well on Teams

He recognized that one player alone never wins a championship, and so he assembled
an entire “dream team” around MJ. This team was a well-oiled machine—at least as
impressive as Michael himself.

So, why do we repeatedly idolize the individual in these stories? Why do people buy
products endorsed by celebrities? Why do we want to buy Michelle Obama’s dress or
Michael Jordan’s shoes?

Celebrity is a big part of it. Humans have a natural instinct to find leaders and role
models, idolize them, and attempt to imitate them. We all need heroes for inspiration,
and the programming world has its heroes, too. The phenomenon of “techie-
celebrity” has almost spilled over into mythology. We all want to write something
world-changing like Linux or design the next brilliant programming language.

Deep down, many engineers secretly wish to be seen as geniuses. This fantasy goes
something like this:

• You are struck by an awesome new concept.
• You vanish into your cave for weeks or months, slaving away at a perfect imple‐

mentation of your idea.
• You then “unleash” your software on the world, shocking everyone with your

genius.
• Your peers are astonished by your cleverness.
• People line up to use your software.
• Fame and fortune follow naturally.

But hold on: time for a reality check. You’re probably not a genius.

No offense, of course—we’re sure that you’re a very intelligent person. But do you
realize how rare actual geniuses really are? Sure, you write code, and that’s a tricky
skill. But even if you are a genius, it turns out that that’s not enough. Geniuses still
make mistakes, and having brilliant ideas and elite programming skills doesn’t guar‐
antee that your software will be a hit. Worse, you might find yourself solving only
analytical problems and not human problems. Being a genius is most definitely not
an excuse for being a jerk: anyone—genius or not—with poor social skills tends to be
a poor teammate. The vast majority of the work at Google (and at most companies!)
doesn’t require genius-level intellect, but 100% of the work requires a minimal level of
social skills. What will make or break your career, especially at a company like
Google, is how well you collaborate with others.

It turns out that this Genius Myth is just another manifestation of our insecurity.
Many programmers are afraid to share work they’ve only just started because it
means peers will see their mistakes and know the author of the code is not a genius.

The Genius Myth | 29

To quote a friend:

I know I get SERIOUSLY insecure about people looking before something is done.
Like they are going to seriously judge me and think I’m an idiot.

This is an extremely common feeling among programmers, and the natural reaction
is to hide in a cave, work, work, work, and then polish, polish, polish, sure that no
one will see your goof-ups and that you’ll still have a chance to unveil your master‐
piece when you’re done. Hide away until your code is perfect.

Another common motivation for hiding your work is the fear that another program‐
mer might take your idea and run with it before you get around to working on it. By
keeping it secret, you control the idea.

We know what you’re probably thinking now: so what? Shouldn’t people be allowed
to work however they want?

Actually, no. In this case, we assert that you’re doing it wrong, and it is a big deal.
Here’s why.

Hiding Considered Harmful
If you spend all of your time working alone, you’re increasing the risk of unnecessary
failure and cheating your potential for growth. Even though software development is
deeply intellectual work that can require deep concentration and alone time, you
must play that off against the value (and need!) for collaboration and review.

First of all, how do you even know whether you’re on the right track?

Imagine you’re a bicycle-design enthusiast, and one day you get a brilliant idea for a
completely new way to design a gear shifter. You order parts and proceed to spend
weeks holed up in your garage trying to build a prototype. When your neighbor—
also a bike advocate—asks you what’s up, you decide not to talk about it. You don’t
want anyone to know about your project until it’s absolutely perfect. Another few
months go by and you’re having trouble making your prototype work correctly. But
because you’re working in secrecy, it’s impossible to solicit advice from your mechani‐
cally inclined friends.

Then, one day your neighbor pulls his bike out of his garage with a radical new gear-
shifting mechanism. Turns out he’s been building something very similar to your
invention, but with the help of some friends down at the bike shop. At this point,
you’re exasperated. You show him your work. He points out that your design had
some simple flaws—ones that might have been fixed in the first week if you had
shown him. There are a number of lessons to learn here.

30 | Chapter 2: How to Work Well on Teams

2 Literally, if you are, in fact, a bike designer.
3 I should note that sometimes it’s dangerous to get too much feedback too early in the process if you’re still

unsure of your general direction or goal.

Early Detection
If you keep your great idea hidden from the world and refuse to show anyone any‐
thing until the implementation is polished, you’re taking a huge gamble. It’s easy to
make fundamental design mistakes early on. You risk reinventing wheels.2 And you
forfeit the benefits of collaboration, too: notice how much faster your neighbor
moved by working with others? This is why people dip their toes in the water before
jumping in the deep end: you need to make sure that you’re working on the right
thing, you’re doing it correctly, and it hasn’t been done before. The chances of an
early misstep are high. The more feedback you solicit early on, the more you lower
this risk.3 Remember the tried-and-true mantra of “Fail early, fail fast, fail often.”

Early sharing isn’t just about preventing personal missteps and getting your ideas vet‐
ted. It’s also important to strengthen what we call the bus factor of your project.

The Bus Factor
Bus factor (noun): the number of people that need to get hit by a bus before your
project is completely doomed.

How dispersed is the knowledge and know-how in your project? If you’re the only
person who understands how the prototype code works, you might enjoy good job
security—but if you get hit by a bus, the project is toast. If you’re working with a col‐
league, however, you’ve doubled the bus factor. And if you have a small team design‐
ing and prototyping together, things are even better—the project won’t be marooned
when a team member disappears. Remember: team members might not literally be
hit by buses, but other unpredictable life events still happen. Someone might get mar‐
ried, move away, leave the company, or take leave to care for a sick relative. Ensuring
that there is at least good documentation in addition to a primary and a secondary
owner for each area of responsibility helps future-proof your project’s success and
increases your project’s bus factor. Hopefully most engineers recognize that it is better
to be one part of a successful project than the critical part of a failed project.

Beyond the bus factor, there’s the issue of overall pace of progress. It’s easy to forget
that working alone is often a tough slog, much slower than people want to admit.
How much do you learn when working alone? How fast do you move? Google and
Stack Overflow are great sources of opinions and information, but they’re no substi‐
tute for actual human experience. Working with other people directly increases the
collective wisdom behind the effort. When you become stuck on something absurd,
how much time do you waste pulling yourself out of the hole? Think about how

Hiding Considered Harmful | 31

different the experience would be if you had a couple of peers to look over your
shoulder and tell you—instantly—how you goofed and how to get past the problem.
This is exactly why teams sit together (or do pair programming) in software engi‐
neering companies. Programming is hard. Software engineering is even harder. You
need that second pair of eyes.

Pace of Progress
Here’s another analogy. Think about how you work with your compiler. When you sit
down to write a large piece of software, do you spend days writing 10,000 lines of
code, and then, after writing that final, perfect line, press the “compile” button for the
very first time? Of course you don’t. Can you imagine what sort of disaster would
result? Programmers work best in tight feedback loops: write a new function, com‐
pile. Add a test, compile. Refactor some code, compile. This way, we discover and fix
typos and bugs as soon as possible after generating code. We want the compiler at our
side for every little step; some environments can even compile our code as we type.
This is how we keep code quality high and make sure our software is evolving cor‐
rectly, bit by bit. The current DevOps philosophy toward tech productivity is explicit
about these sorts of goals: get feedback as early as possible, test as early as possible,
and think about security and production environments as early as possible. This is all
bundled into the idea of “shifting left” in the developer workflow; the earlier we find a
problem, the cheaper it is to fix it.

The same sort of rapid feedback loop is needed not just at the code level, but at the
whole-project level, too. Ambitious projects evolve quickly and must adapt to chang‐
ing environments as they go. Projects run into unpredictable design obstacles or
political hazards, or we simply discover that things aren’t working as planned.
Requirements morph unexpectedly. How do you get that feedback loop so that you
know the instant your plans or designs need to change? Answer: by working in a
team. Most engineers know the quote, “Many eyes make all bugs shallow,” but a better
version might be, “Many eyes make sure your project stays relevant and on track.”
People working in caves awaken to discover that while their original vision might be
complete, the world has changed and their project has become irrelevant.

Case Study: Engineers and Offices
Twenty-five years ago, conventional wisdom stated that for an engineer to be produc‐
tive, they needed to have their own office with a door that closed. This was suppos‐
edly the only way they could have big, uninterrupted slabs of time to deeply
concentrate on writing reams of code.

32 | Chapter 2: How to Work Well on Teams

4 I do, however, acknowledge that serious introverts likely need more peace, quiet, and alone time than most
people and might benefit from a quieter environment, if not their own office.

I think that it’s not only unnecessary for most engineers4 to be in a private office, it’s
downright dangerous. Software today is written by teams, not individuals, and a high-
bandwidth, readily available connection to the rest of your team is even more valua‐
ble than your internet connection. You can have all the uninterrupted time in the
world, but if you’re using it to work on the wrong thing, you’re wasting your time.

Unfortunately, it seems that modern-day tech companies (including Google, in some
cases) have swung the pendulum to the exact opposite extreme. Walk into their offi‐
ces and you’ll often find engineers clustered together in massive rooms—a hundred
or more people together—with no walls whatsoever. This “open floor plan” is now a
topic of huge debate and, as a result, hostility toward open offices is on the rise. The
tiniest conversation becomes public, and people end up not talking for risk of annoy‐
ing dozens of neighbors. This is just as bad as private offices!

We think the middle ground is really the best solution. Group teams of four to eight
people together in small rooms (or large offices) to make it easy (and non-
embarrassing) for spontaneous conversation to happen.

Of course, in any situation, individual engineers still need a way to filter out noise and
interruptions, which is why most teams I’ve seen have developed a way to communi‐
cate that they’re currently busy and that you should limit interruptions. Some of us
used to work on a team with a vocal interrupt protocol: if you wanted to talk, you
would say “Breakpoint Mary,” where Mary was the name of the person you wanted to
talk to. If Mary was at a point where she could stop, she would swing her chair around
and listen. If Mary was too busy, she’d just say “ack,” and you’d go on with other things
until she finished with her current head state.

Other teams have tokens or stuffed animals that team members put on their monitor
to signify that they should be interrupted only in case of emergency. Still other teams
give out noise-canceling headphones to engineers to make it easier to deal with back‐
ground noise—in fact, in many companies, the very act of wearing headphones is a
common signal that means “don’t disturb me unless it’s really important.” Many engi‐
neers tend to go into headphones-only mode when coding, which may be useful for
short spurts but, if used all the time, can be just as bad for collaboration as walling
yourself off in an office.

Don’t misunderstand us—we still think engineers need uninterrupted time to focus
on writing code, but we think they need a high-bandwidth, low-friction connection to
their team just as much. If less-knowledgeable people on your team feel that there’s a
barrier to asking you a question, it’s a problem: finding the right balance is an art.

Hiding Considered Harmful | 33

In Short, Don’t Hide
So, what “hiding” boils down to is this: working alone is inherently riskier than work‐
ing with others. Even though you might be afraid of someone stealing your idea or
thinking you’re not intelligent, you should be much more concerned about wasting
huge swaths of your time toiling away on the wrong thing.

Don’t become another statistic.

It’s All About the Team
So, let’s back up now and put all of these ideas together.

The point we’ve been hammering away at is that, in the realm of programming, lone
craftspeople are extremely rare—and even when they do exist, they don’t perform
superhuman achievements in a vacuum; their world-changing accomplishment is
almost always the result of a spark of inspiration followed by a heroic team effort.

A great team makes brilliant use of its superstars, but the whole is always greater than
the sum of its parts. But creating a superstar team is fiendishly difficult.

Let’s put this idea into simpler words: software engineering is a team endeavor.

This concept directly contradicts the inner Genius Programmer fantasy so many of us
hold, but it’s not enough to be brilliant when you’re alone in your hacker’s lair. You’re
not going to change the world or delight millions of computer users by hiding and
preparing your secret invention. You need to work with other people. Share your
vision. Divide the labor. Learn from others. Create a brilliant team.

Consider this: how many pieces of widely used, successful software can you name
that were truly written by a single person? (Some people might say “LaTeX,” but it’s
hardly “widely used,” unless you consider the number of people writing scientific
papers to be a statistically significant portion of all computer users!)

High-functioning teams are gold and the true key to success. You should be aiming
for this experience however you can.

The Three Pillars of Social Interaction
So, if teamwork is the best route to producing great software, how does one build (or
find) a great team?

To reach collaborative nirvana, you first need to learn and embrace what I call the
“three pillars” of social skills. These three principles aren’t just about greasing the
wheels of relationships; they’re the foundation on which all healthy interaction and
collaboration are based:

34 | Chapter 2: How to Work Well on Teams

5 This is incredibly difficult if you’ve been burned in the past by delegating to incompetent people.

Pillar 1: Humility
You are not the center of the universe (nor is your code!). You’re neither omnis‐
cient nor infallible. You’re open to self-improvement.

Pillar 2: Respect
You genuinely care about others you work with. You treat them kindly and
appreciate their abilities and accomplishments.

Pillar 3: Trust
You believe others are competent and will do the right thing, and you’re OK with
letting them drive when appropriate.5

If you perform a root-cause analysis on almost any social conflict, you can ultimately
trace it back to a lack of humility, respect, and/or trust. That might sound implausible
at first, but give it a try. Think about some nasty or uncomfortable social situation
currently in your life. At the basest level, is everyone being appropriately humble? Are
people really respecting one another? Is there mutual trust?

Why Do These Pillars Matter?
When you began this chapter, you probably weren’t planning to sign up for some sort
of weekly support group. We empathize. Dealing with social problems can be diffi‐
cult: people are messy, unpredictable, and often annoying to interface with. Rather
than putting energy into analyzing social situations and making strategic moves, it’s
tempting to write off the whole effort. It’s much easier to hang out with a predictable
compiler, isn’t it? Why bother with the social stuff at all?

Here’s a quote from a famous lecture by Richard Hamming:

By taking the trouble to tell jokes to the secretaries and being a little friendly, I got
superb secretarial help. For instance, one time for some idiot reason all the reproduc‐
ing services at Murray Hill were tied up. Don’t ask me how, but they were. I wanted
something done. My secretary called up somebody at Holmdel, hopped [into] the com‐
pany car, made the hour-long trip down and got it reproduced, and then came back. It
was a payoff for the times I had made an effort to cheer her up, tell her jokes and be
friendly; it was that little extra work that later paid off for me. By realizing you have to
use the system and studying how to get the system to do your work, you learn how to
adapt the system to your desires.

The moral is this: do not underestimate the power of playing the social game. It’s not
about tricking or manipulating people; it’s about creating relationships to get things
done. Relationships always outlast projects. When you’ve got richer relationships
with your coworkers, they’ll be more willing to go the extra mile when you need
them.

It’s All About the Team | 35

http://bit.ly/hamming_paper

Humility, Respect, and Trust in Practice
All of this preaching about humility, respect, and trust sounds like a sermon. Let’s
come out of the clouds and think about how to apply these ideas in real-life situa‐
tions. We’re going to examine a list of specific behaviors and examples that you can
start with. Many of them might sound obvious at first, but after you begin thinking
about them, you’ll notice how often you (and your peers) are guilty of not following
them—we’ve certainly noticed this about ourselves!

Lose the ego
OK, this is sort of a simpler way of telling someone without enough humility to lose
their ’tude. Nobody wants to work with someone who consistently behaves like
they’re the most important person in the room. Even if you know you’re the wisest
person in the discussion, don’t wave it in people’s faces. For example, do you always
feel like you need to have the first or last word on every subject? Do you feel the need
to comment on every detail in a proposal or discussion? Or do you know somebody
who does these things?

Although it’s important to be humble, that doesn’t mean you need to be a doormat;
there’s nothing wrong with self-confidence. Just don’t come off like a know-it-all.
Even better, think about going for a “collective” ego, instead; rather than worrying
about whether you’re personally awesome, try to build a sense of team accomplish‐
ment and group pride. For example, the Apache Software Foundation has a long his‐
tory of creating communities around software projects. These communities have
incredibly strong identities and reject people who are more concerned with self-
promotion.

Ego manifests itself in many ways, and a lot of the time, it can get in the way of your
productivity and slow you down. Here’s another great story from Hamming’s lecture
that illustrates this point perfectly (emphasis ours):

John Tukey almost always dressed very casually. He would go into an important office
and it would take a long time before the other fellow realized that this is a first-class
man and he had better listen. For a long time, John has had to overcome this kind of
hostility. It’s wasted effort! I didn’t say you should conform; I said, “The appearance of
conforming gets you a long way.” If you chose to assert your ego in any number of
ways, “I am going to do it my way,” you pay a small steady price throughout the whole
of your professional career. And this, over a whole lifetime, adds up to an enormous
amount of needless trouble. […] By realizing you have to use the system and studying
how to get the system to do your work, you learn how to adapt the system to your
desires. Or you can fight it steadily, as a small, undeclared war, for the whole of your life.

36 | Chapter 2: How to Work Well on Teams

Learn to give and take criticism
A few years ago, Joe started a new job as a programmer. After his first week, he really
began digging into the codebase. Because he cared about what was going on, he
started gently questioning other teammates about their contributions. He sent simple
code reviews by email, politely asking about design assumptions or pointing out
places where logic could be improved. After a couple of weeks, he was summoned to
his director’s office. “What’s the problem?” Joe asked. “Did I do something wrong?”
The director looked concerned: “We’ve had a lot of complaints about your behavior,
Joe. Apparently, you’ve been really harsh toward your teammates, criticizing them left
and right. They’re upset. You need to tone it down.” Joe was utterly baffled. Surely, he
thought, his code reviews should have been welcomed and appreciated by his peers.
In this case, however, Joe should have been more sensitive to the team’s widespread
insecurity and should have used a subtler means to introduce code reviews into the
culture—perhaps even something as simple as discussing the idea with the team in
advance and asking team members to try it out for a few weeks.

In a professional software engineering environment, criticism is almost never per‐
sonal—it’s usually just part of the process of making a better project. The trick is to
make sure you (and those around you) understand the difference between a con‐
structive criticism of someone’s creative output and a flat-out assault against some‐
one’s character. The latter is useless—it’s petty and nearly impossible to act on. The
former can (and should!) be helpful and give guidance on how to improve. And, most
important, it’s imbued with respect: the person giving the constructive criticism genu‐
inely cares about the other person and wants them to improve themselves or their
work. Learn to respect your peers and give constructive criticism politely. If you truly
respect someone, you’ll be motivated to choose tactful, helpful phrasing—a skill
acquired with much practice. We cover this much more in Chapter 9.

On the other side of the conversation, you need to learn to accept criticism as well.
This means not just being humble about your skills, but trusting that the other person
has your best interests (and those of your project!) at heart and doesn’t actually think
you’re an idiot. Programming is a skill like anything else: it improves with practice. If
a peer pointed out ways in which you could improve your juggling, would you take it
as an attack on your character and value as a human being? We hope not. In the same
way, your self-worth shouldn’t be connected to the code you write—or any creative
project you build. To repeat ourselves: you are not your code. Say that over and over.
You are not what you make. You need to not only believe it yourself, but get your
coworkers to believe it, too.

For example, if you have an insecure collaborator, here’s what not to say: “Man, you
totally got the control flow wrong on that method there. You should be using the
standard xyzzy code pattern like everyone else.” This feedback is full of antipatterns:
you’re telling someone they’re “wrong” (as if the world were black and white),
demanding they change something, and accusing them of creating something that

It’s All About the Team | 37

6 You can find a dozen variants of this legend on the web, attributed to different famous managers.
7 By the same token, if you do the same thing over and over and keep failing, it’s not failure, it’s incompetence.

goes against what everyone else is doing (making them feel stupid). Your coworker
will immediately be put on the offense, and their response is bound to be overly
emotional.

A better way to say the same thing might be, “Hey, I’m confused by the control flow
in this section here. I wonder if the xyzzy code pattern might make this clearer and
easier to maintain?” Notice how you’re using humility to make the question about
you, not them. They’re not wrong; you’re just having trouble understanding the code.
The suggestion is merely offered up as a way to clarify things for poor little you while
possibly helping the project’s long-term sustainability goals. You’re also not demand‐
ing anything—you’re giving your collaborator the ability to peacefully reject the sug‐
gestion. The discussion stays focused on the code itself, not on anyone’s value or
coding skills.

Fail fast and iterate
There’s a well-known urban legend in the business world about a manager who
makes a mistake and loses an impressive $10 million. He dejectedly goes into the
office the next day and starts packing up his desk, and when he gets the inevitable
“the CEO wants to see you in his office” call, he trudges into the CEO’s office and qui‐
etly slides a piece of paper across the desk.

“What’s this?” asks the CEO.
“My resignation,” says the executive. “I assume you called me in here to fire me.”
“Fire you?” responds the CEO, incredulously. “Why would I fire you? I just spent $10
million training you!”6

It’s an extreme story, to be sure, but the CEO in this story understands that firing the
executive wouldn’t undo the $10 million loss, and it would compound it by losing a
valuable executive who he can be very sure won’t make that kind of mistake again.

At Google, one of our favorite mottos is that “Failure is an option.” It’s widely recog‐
nized that if you’re not failing now and then, you’re not being innovative enough or
taking enough risks. Failure is viewed as a golden opportunity to learn and improve
for the next go-around.7 In fact, Thomas Edison is often quoted as saying, “If I find
10,000 ways something won’t work, I haven’t failed. I am not discouraged, because
every wrong attempt discarded is another step forward.”

Over in Google X—the division that works on “moonshots” like self-driving cars and
internet access delivered by balloons—failure is deliberately built into its incentive
system. People come up with outlandish ideas and coworkers are actively encouraged

38 | Chapter 2: How to Work Well on Teams

to shoot them down as fast as possible. Individuals are rewarded (and even compete)
to see how many ideas they can disprove or invalidate in a fixed period of time. Only
when a concept truly cannot be debunked at a whiteboard by all peers does it proceed
to early prototype.

Blameless Post-Mortem Culture
The key to learning from your mistakes is to document your failures by performing a
root-cause analysis and writing up a “postmortem,” as it’s called at Google (and many
other companies). Take extra care to make sure the postmortem document isn’t just a
useless list of apologies or excuses or finger-pointing—that’s not its purpose. A proper
postmortem should always contain an explanation of what was learned and what is
going to change as a result of the learning experience. Then, make sure that the post‐
mortem is readily accessible and that the team really follows through on the proposed
changes. Properly documenting failures also makes it easier for other people (present
and future) to know what happened and avoid repeating history. Don’t erase your
tracks—light them up like a runway for those who follow you!

A good postmortem should include the following:

• A brief summary of the event
• A timeline of the event, from discovery through investigation to resolution
• The primary cause of the event
• Impact and damage assessment
• A set of action items (with owners) to fix the problem immediately
• A set of action items to prevent the event from happening again
• Lessons learned

Learn patience
Years ago, I was writing a tool to convert CVS repositories to Subversion (and later,
Git). Due to the vagaries of CVS, I kept unearthing bizarre bugs. Because my long‐
time friend and coworker Karl knew CVS quite intimately, we decided we should
work together to fix these bugs.

A problem arose when we began pair programming: I’m a bottom-up engineer who is
content to dive into the muck and dig my way out by trying a lot of things quickly
and skimming over the details. Karl, however, is a top-down engineer who wants to
get the full lay of the land and dive into the implementation of almost every method
on the call stack before proceeding to tackle the bug. This resulted in some epic inter‐
personal conflicts, disagreements, and the occasional heated argument. It got to the

It’s All About the Team | 39

point at which the two of us simply couldn’t pair-program together: it was too frus‐
trating for us both.

That said, we had a longstanding history of trust and respect for each other. Com‐
bined with patience, this helped us work out a new method of collaborating. We
would sit together at the computer, identify the bug, and then split up and attack the
problem from two directions at once (top-down and bottom-up) before coming back
together with our findings. Our patience and willingness to improvise new working
styles not only saved the project, but also our friendship.

Be open to influence
The more open you are to influence, the more you are able to influence; the more
vulnerable you are, the stronger you appear. These statements sound like bizarre con‐
tradictions. But everyone can think of someone they’ve worked with who is just mad‐
deningly stubborn—no matter how much people try to persuade them, they dig their
heels in even more. What eventually happens to such team members? In our experi‐
ence, people stop listening to their opinions or objections; instead, they end up “rout‐
ing around” them like an obstacle everyone takes for granted. You certainly don’t
want to be that person, so keep this idea in your head: it’s OK for someone else to
change your mind. In the opening chapter of this book, we said that engineering is
inherently about trade-offs. It’s impossible for you to be right about everything all the
time unless you have an unchanging environment and perfect knowledge, so of
course you should change your mind when presented with new evidence. Choose
your battles carefully: to be heard properly, you first need to listen to others. It’s better
to do this listening before putting a stake in the ground or firmly announcing a deci‐
sion—if you’re constantly changing your mind, people will think you’re wishy-washy.

The idea of vulnerability can seem strange, too. If someone admits ignorance of the
topic at hand or the solution to a problem, what sort of credibility will they have in a
group? Vulnerability is a show of weakness, and that destroys trust, right?

Not true. Admitting that you’ve made a mistake or you’re simply out of your league
can increase your status over the long run. In fact, the willingness to express vulnera‐
bility is an outward show of humility, it demonstrates accountability and the willing‐
ness to take responsibility, and it’s a signal that you trust others’ opinions. In return,
people end up respecting your honesty and strength. Sometimes, the best thing you
can do is just say, “I don’t know.”

Professional politicians, for example, are notorious for never admitting error or igno‐
rance, even when it’s patently obvious that they’re wrong or unknowledgeable about a
subject. This behavior exists primarily because politicians are constantly under attack
by their opponents, and it’s why most people don’t believe a word that politicians say.
When you’re writing software, however, you don’t need to be continually on the

40 | Chapter 2: How to Work Well on Teams

defensive—your teammates are collaborators, not competitors. You all have the same
goal.

Being Googley
At Google, we have our own internal version of the principles of “humility, respect,
and trust” when it comes to behavior and human interactions.

From the earliest days of our culture, we often referred to actions as being “Googley”
or “not Googley.” The word was never explicitly defined; rather, everyone just sort of
took it to mean “don’t be evil” or “do the right thing” or “be good to each other.” Over
time, people also started using the term “Googley” as an informal test for culture-fit
whenever we would interview a candidate for an engineering job, or when writing
internal performance reviews of one another. People would often express opinions
about others using the term; for example, “the person coded well, but didn’t seem to
have a very Googley attitude.”

Of course, we eventually realized that the term “Googley” was being overloaded with
meaning; worse yet, it could become a source of unconscious bias in hiring or evalua‐
tions. If “Googley” means something different to every employee, we run the risk of
the term starting to mean “is just like me.” Obviously, that’s not a good test for hiring
—we don’t want to hire people “just like me,” but people from a diverse set of back‐
grounds and with different opinions and experiences. An interviewer’s personal
desire to have a beer with a candidate (or coworker) should never be considered a
valid signal about somebody else’s performance or ability to thrive at Google.

Google eventually fixed the problem by explicitly defining a rubric for what we mean
by “Googleyness”—a set of attributes and behaviors that we look for that represent
strong leadership and exemplify “humility, respect, and trust”:

Thrives in ambiguity
Can deal with conflicting messages or directions, build consensus, and make pro‐
gress against a problem, even when the environment is constantly shifting.

Values feedback
Has humility to both receive and give feedback gracefully and understands how
valuable feedback is for personal (and team) development.

Challenges status quo
Is able to set ambitious goals and pursue them even when there might be resist‐
ance or inertia from others.

Puts the user first
Has empathy and respect for users of Google’s products and pursues actions that
are in their best interests.

It’s All About the Team | 41

Cares about the team
Has empathy and respect for coworkers and actively works to help them without
being asked, improving team cohesion.

Does the right thing
Has a strong sense of ethics about everything they do; willing to make difficult or
inconvenient decisions to protect the integrity of the team and product.

Now that we have these best-practice behaviors better defined, we’ve begun to shy
away from using the term “Googley.” It’s always better to be specific about expecta‐
tions!

Conclusion
The foundation for almost any software endeavor—of almost any size—is a well-
functioning team. Although the Genius Myth of the solo software developer still per‐
sists, the truth is that no one really goes it alone. For a software organization to stand
the test of time, it must have a healthy culture, rooted in humility, trust, and respect
that revolves around the team, rather than the individual. Further, the creative nature
of software development requires that people take risks and occasionally fail; for peo‐
ple to accept that failure, a healthy team environment must exist.

TL;DRs
• Be aware of the trade-offs of working in isolation.
• Acknowledge the amount of time that you and your team spend communicating

and in interpersonal conflict. A small investment in understanding personalities
and working styles of yourself and others can go a long way toward improving
productivity.

• If you want to work effectively with a team or a large organization, be aware of
your preferred working style and that of others.

42 | Chapter 2: How to Work Well on Teams

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Programming Over Time
	Google’s Perspective
	What This Book Isn’t
	Parting Remarks
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Thesis
	Chapter 1. What Is Software Engineering?
	Time and Change
	Hyrum’s Law
	Example: Hash Ordering
	Why Not Just Aim for “Nothing Changes”?

	Scale and Efficiency
	Policies That Don’t Scale
	Policies That Scale Well
	Example: Compiler Upgrade
	Shifting Left

	Trade-offs and Costs
	Example: Markers
	Inputs to Decision Making
	Example: Distributed Builds
	Example: Deciding Between Time and Scale
	Revisiting Decisions, Making Mistakes

	Software Engineering Versus Programming
	Conclusion
	TL;DRs

	Part II. Culture
	Chapter 2. How to Work Well on Teams
	Help Me Hide My Code
	The Genius Myth
	Hiding Considered Harmful
	Early Detection
	The Bus Factor
	Pace of Progress
	In Short, Don’t Hide

	It’s All About the Team
	The Three Pillars of Social Interaction
	Why Do These Pillars Matter?
	Humility, Respect, and Trust in Practice
	Blameless Post-Mortem Culture
	Being Googley

	Conclusion
	TL;DRs

	Chapter 3. Knowledge Sharing
	Challenges to Learning
	Philosophy
	Setting the Stage: Psychological Safety
	Mentorship
	Psychological Safety in Large Groups

	Growing Your Knowledge
	Ask Questions
	Understand Context

	Scaling Your Questions: Ask the Community
	Group Chats
	Mailing Lists
	YAQS: Question-and-Answer Platform

	Scaling Your Knowledge: You Always Have Something to Teach
	Office Hours
	Tech Talks and Classes
	Documentation
	Code

	Scaling Your Organization’s Knowledge
	Cultivating a Knowledge-Sharing Culture
	Establishing Canonical Sources of Information
	Staying in the Loop

	Readability: Standardized Mentorship Through Code Review
	What Is the Readability Process?
	Why Have This Process?

	Conclusion
	TL;DRs

	Chapter 4. Engineering for Equity
	Bias Is the Default
	Understanding the Need for Diversity
	Building Multicultural Capacity
	Making Diversity Actionable
	Reject Singular Approaches
	Challenge Established Processes
	Values Versus Outcomes
	Stay Curious, Push Forward
	Conclusion
	TL;DRs

	Chapter 5. How to Lead a Team
	Managers and Tech Leads (and Both)
	The Engineering Manager
	The Tech Lead
	The Tech Lead Manager

	Moving from an Individual Contributor Role to a Leadership Role
	The Only Thing to Fear Is…Well, Everything
	Servant Leadership

	The Engineering Manager
	Manager Is a Four-Letter Word
	Today’s Engineering Manager

	Antipatterns
	Antipattern: Hire Pushovers
	Antipattern: Ignore Low Performers
	Antipattern: Ignore Human Issues
	Antipattern: Be Everyone’s Friend
	Antipattern: Compromise the Hiring Bar
	Antipattern: Treat Your Team Like Children

	Positive Patterns
	Lose the Ego
	Be a Zen Master
	Be a Catalyst
	Remove Roadblocks
	Be a Teacher and a Mentor
	Set Clear Goals
	Be Honest
	Track Happiness

	The Unexpected Question
	Other Tips and Tricks
	People Are Like Plants
	Intrinsic Versus Extrinsic Motivation

	Conclusion
	TL;DRs

	Chapter 6. Leading at Scale
	Always Be Deciding
	The Parable of the Airplane
	Identify the Blinders
	Identify the Key Trade-Offs
	Decide, Then Iterate

	Always Be Leaving
	Your Mission: Build a “Self-Driving” Team
	Dividing the Problem Space

	Always Be Scaling
	The Cycle of Success
	Important Versus Urgent
	Learn to Drop Balls
	Protecting Your Energy

	Conclusion
	TL;DRs

	Chapter 7. Measuring Engineering Productivity
	Why Should We Measure Engineering Productivity?
	Triage: Is It Even Worth Measuring?
	Selecting Meaningful Metrics with Goals and Signals
	Goals
	Signals
	Metrics
	Using Data to Validate Metrics
	Taking Action and Tracking Results
	Conclusion
	TL;DRs

	Part III. Processes
	Chapter 8. Style Guides and Rules
	Why Have Rules?
	Creating the Rules
	Guiding Principles
	The Style Guide

	Changing the Rules
	The Process
	The Style Arbiters
	Exceptions

	Guidance
	Applying the Rules
	Error Checkers
	Code Formatters

	Conclusion
	TL;DRs

	Chapter 9. Code Review
	Code Review Flow
	How Code Review Works at Google
	Code Review Benefits
	Code Correctness
	Comprehension of Code
	Code Consistency
	Psychological and Cultural Benefits
	Knowledge Sharing

	Code Review Best Practices
	Be Polite and Professional
	Write Small Changes
	Write Good Change Descriptions
	Keep Reviewers to a Minimum
	Automate Where Possible

	Types of Code Reviews
	Greenfield Code Reviews
	Behavioral Changes, Improvements, and Optimizations
	Bug Fixes and Rollbacks
	Refactorings and Large-Scale Changes

	Conclusion
	TL;DRs

	Chapter 10. Documentation
	What Qualifies as Documentation?
	Why Is Documentation Needed?
	Documentation Is Like Code
	Know Your Audience
	Types of Audiences

	Documentation Types
	Reference Documentation
	Design Docs
	Tutorials
	Conceptual Documentation
	Landing Pages

	Documentation Reviews
	Documentation Philosophy
	WHO, WHAT, WHEN, WHERE, and WHY
	The Beginning, Middle, and End
	The Parameters of Good Documentation
	Deprecating Documents

	When Do You Need Technical Writers?
	Conclusion
	TL;DRs

	Chapter 11. Testing Overview
	Why Do We Write Tests?
	The Story of Google Web Server
	Testing at the Speed of Modern Development
	Write, Run, React
	Benefits of Testing Code

	Designing a Test Suite
	Test Size
	Test Scope
	The Beyoncé Rule
	A Note on Code Coverage

	Testing at Google Scale
	The Pitfalls of a Large Test Suite

	History of Testing at Google
	Orientation Classes
	Test Certified
	Testing on the Toilet
	Testing Culture Today

	The Limits of Automated Testing
	Conclusion
	TL;DRs

	Chapter 12. Unit Testing
	The Importance of Maintainability
	Preventing Brittle Tests
	Strive for Unchanging Tests
	Test via Public APIs
	Test State, Not Interactions

	Writing Clear Tests
	Make Your Tests Complete and Concise
	Test Behaviors, Not Methods
	Don’t Put Logic in Tests
	Write Clear Failure Messages

	Tests and Code Sharing: DAMP, Not DRY
	Shared Values
	Shared Setup
	Shared Helpers and Validation
	Defining Test Infrastructure

	Conclusion
	TL;DRs

	Chapter 13. Test Doubles
	The Impact of Test Doubles on Software Development
	Test Doubles at Google
	Basic Concepts
	An Example Test Double
	Seams
	Mocking Frameworks

	Techniques for Using Test Doubles
	Faking
	Stubbing
	Interaction Testing

	Real Implementations
	Prefer Realism Over Isolation
	How to Decide When to Use a Real Implementation

	Faking
	Why Are Fakes Important?
	When Should Fakes Be Written?
	The Fidelity of Fakes
	Fakes Should Be Tested
	What to Do If a Fake Is Not Available

	Stubbing
	The Dangers of Overusing Stubbing
	When Is Stubbing Appropriate?

	Interaction Testing
	Prefer State Testing Over Interaction Testing
	When Is Interaction Testing Appropriate?
	Best Practices for Interaction Testing

	Conclusion
	TL;DRs

	Chapter 14. Larger Testing
	What Are Larger Tests?
	Fidelity
	Common Gaps in Unit Tests
	Why Not Have Larger Tests?

	Larger Tests at Google
	Larger Tests and Time
	Larger Tests at Google Scale

	Structure of a Large Test
	The System Under Test
	Test Data
	Verification

	Types of Larger Tests
	Functional Testing of One or More Interacting Binaries
	Browser and Device Testing
	Performance, Load, and Stress testing
	Deployment Configuration Testing
	Exploratory Testing
	A/B Diff Regression Testing
	UAT
	Probers and Canary Analysis
	Disaster Recovery and Chaos Engineering
	User Evaluation

	Large Tests and the Developer Workflow
	Authoring Large Tests
	Running Large Tests
	Owning Large Tests

	Conclusion
	TL;DRs

	Chapter 15. Deprecation
	Why Deprecate?
	Why Is Deprecation So Hard?
	Deprecation During Design

	Types of Deprecation
	Advisory Deprecation
	Compulsory Deprecation
	Deprecation Warnings

	Managing the Deprecation Process
	Process Owners
	Milestones
	Deprecation Tooling

	Conclusion
	TL;DRs

	Part IV. Tools
	Chapter 16. Version Control and Branch Management
	What Is Version Control?
	Why Is Version Control Important?
	Centralized VCS Versus Distributed VCS
	Source of Truth
	Version Control Versus Dependency Management

	Branch Management
	Work in Progress Is Akin to a Branch
	Dev Branches
	Release Branches

	Version Control at Google
	One Version
	Scenario: Multiple Available Versions
	The “One-Version” Rule
	(Nearly) No Long-Lived Branches
	What About Release Branches?

	Monorepos
	Future of Version Control
	Conclusion
	TL;DRs

	Chapter 17. Code Search
	The Code Search UI
	How Do Googlers Use Code Search?
	Where?
	What?
	How?
	Why?
	Who and When?

	Why a Separate Web Tool?
	Scale
	Zero Setup Global Code View
	Specialization
	Integration with Other Developer Tools
	API Exposure

	Impact of Scale on Design
	Search Query Latency
	Index Latency

	Google’s Implementation
	Search Index
	Ranking

	Selected Trade-Offs
	Completeness: Repository at Head
	Completeness: All Versus Most-Relevant Results
	Completeness: Head Versus Branches Versus All History Versus Workspaces
	Expressiveness: Token Versus Substring Versus Regex

	Conclusion
	TL;DRs

	Chapter 18. Build Systems and Build Philosophy
	Purpose of a Build System
	What Happens Without a Build System?
	But All I Need Is a Compiler!
	Shell Scripts to the Rescue?

	Modern Build Systems
	It’s All About Dependencies
	Task-Based Build Systems
	Artifact-Based Build Systems
	Distributed Builds
	Time, Scale, Trade-Offs

	Dealing with Modules and Dependencies
	Using Fine-Grained Modules and the 1:1:1 Rule
	Minimizing Module Visibility
	Managing Dependencies

	Conclusion
	TL;DRs

	Chapter 19. Critique: Google’s Code Review Tool
	Code Review Tooling Principles
	Code Review Flow
	Notifications

	Stage 1: Create a Change
	Diffing
	Analysis Results
	Tight Tool Integration

	Stage 2: Request Review
	Stages 3 and 4: Understanding and Commenting on a Change
	Commenting
	Understanding the State of a Change

	Stage 5: Change Approvals (Scoring a Change)
	Stage 6: Commiting a Change
	After Commit: Tracking History

	Conclusion
	TL;DRs

	Chapter 20. Static Analysis
	Characteristics of Effective Static Analysis
	Scalability
	Usability

	Key Lessons in Making Static Analysis Work
	Focus on Developer Happiness
	Make Static Analysis a Part of the Core Developer Workflow
	Empower Users to Contribute

	Tricorder: Google’s Static Analysis Platform
	Integrated Tools
	Integrated Feedback Channels
	Suggested Fixes
	Per-Project Customization
	Presubmits
	Compiler Integration
	Analysis While Editing and Browsing Code

	Conclusion
	TL;DRs

	Chapter 21. Dependency Management
	Why Is Dependency Management So Difficult?
	Conflicting Requirements and Diamond Dependencies

	Importing Dependencies
	Compatibility Promises
	Considerations When Importing
	How Google Handles Importing Dependencies

	Dependency Management, In Theory
	Nothing Changes (aka The Static Dependency Model)
	Semantic Versioning
	Bundled Distribution Models
	Live at Head

	The Limitations of SemVer
	SemVer Might Overconstrain
	SemVer Might Overpromise
	Motivations
	Minimum Version Selection
	So, Does SemVer Work?

	Dependency Management with Infinite Resources
	Exporting Dependencies

	Conclusion
	TL;DRs

	Chapter 22. Large-Scale Changes
	What Is a Large-Scale Change?
	Who Deals with LSCs?
	Barriers to Atomic Changes
	Technical Limitations
	Merge Conflicts
	No Haunted Graveyards
	Heterogeneity
	Testing
	Code Review

	LSC Infrastructure
	Policies and Culture
	Codebase Insight
	Change Management
	Testing
	Language Support

	The LSC Process
	Authorization
	Change Creation
	Sharding and Submitting
	Cleanup

	Conclusion
	TL;DRs

	Chapter 23. Continuous Integration
	CI Concepts
	Fast Feedback Loops
	Automation
	Continuous Testing
	CI Challenges
	Hermetic Testing

	CI at Google
	CI Case Study: Google Takeout
	But I Can’t Afford CI

	Conclusion
	TL;DRs

	Chapter 24. Continuous Delivery
	Idioms of Continuous Delivery at Google
	Velocity Is a Team Sport: How to Break Up a Deployment into Manageable Pieces
	Evaluating Changes in Isolation: Flag-Guarding Features
	Striving for Agility: Setting Up a Release Train
	No Binary Is Perfect
	Meet Your Release Deadline

	Quality and User-Focus: Ship Only What Gets Used
	Shifting Left: Making Data-Driven Decisions Earlier
	Changing Team Culture: Building Discipline into Deployment
	Conclusion
	TL;DRs

	Chapter 25. Compute as a Service
	Taming the Compute Environment
	Automation of Toil
	Containerization and Multitenancy
	Summary

	Writing Software for Managed Compute
	Architecting for Failure
	Batch Versus Serving
	Managing State
	Connecting to a Service
	One-Off Code

	CaaS Over Time and Scale
	Containers as an Abstraction
	One Service to Rule Them All
	Submitted Configuration

	Choosing a Compute Service
	Centralization Versus Customization
	Level of Abstraction: Serverless
	Public Versus Private

	Conclusion
	TL;DRs

	Part V. Conclusion
	Afterword
	Index
	About the Authors
	Colophon

