

Context-Free Languages

Chapter 5

Regular languages:

- keywords in a programming language
- names of identifiers
- integers
- all misc symbols: = ;

Not Regular languages:

- $\{a^n c b^n | n > 0\}$
- expressions - $((a + b) - c)$
- block structures (`{}` in Java/C++ and begin ... end in pascal)

Definition: A grammar $G=(V,T,S,P)$ is context-free if all productions are of the form

$$A \rightarrow x$$

Where $A \in V$ and $x \in (V \cup T)^*$.

Definition: L is a context-free language (CFL) iff \exists context-free grammar (CFG) G s.t. $L=L(G)$.

Example: $G = (\{S\}, \{a, b\}, S, P)$

$$S \rightarrow aSb \mid ab$$

Derivation of aaabbb:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$$

$$L(G) = \{a^n b^n \mid n \geq 0\}$$

Example: $G = (\{S\}, \{a, b\}, S, P)$

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \lambda$$

Derivation of ababa:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$$

$\Sigma = \{a, b\}$, $L(G) = \{w \in \Sigma^* \mid w = w^R\}$

STOPPED

Example: $G = (\{S, A, B\}, \{a, b, c\}, S, P)$

$$\begin{array}{l} S \rightarrow A c B \\ A \rightarrow a A a \quad | \quad \lambda \\ B \rightarrow B b b \quad | \quad \lambda \end{array}$$

$L(G) =$

Derivations of aacbb:

1. $S \Rightarrow \underline{A}cB \Rightarrow a\underline{A}acB \Rightarrow aac\underline{B} \Rightarrow aac\underline{B}bb \Rightarrow aacbb$

2. $S \Rightarrow A\underline{c}B \Rightarrow A\underline{c}Bbb \Rightarrow \underline{A}cbb \Rightarrow a\underline{A}acbb \Rightarrow aacbb$

Note: Next variable to be replaced is underlined.

Definition: Leftmost derivation - in each step of a derivation, replace the leftmost variable. (see derivation 1 above).

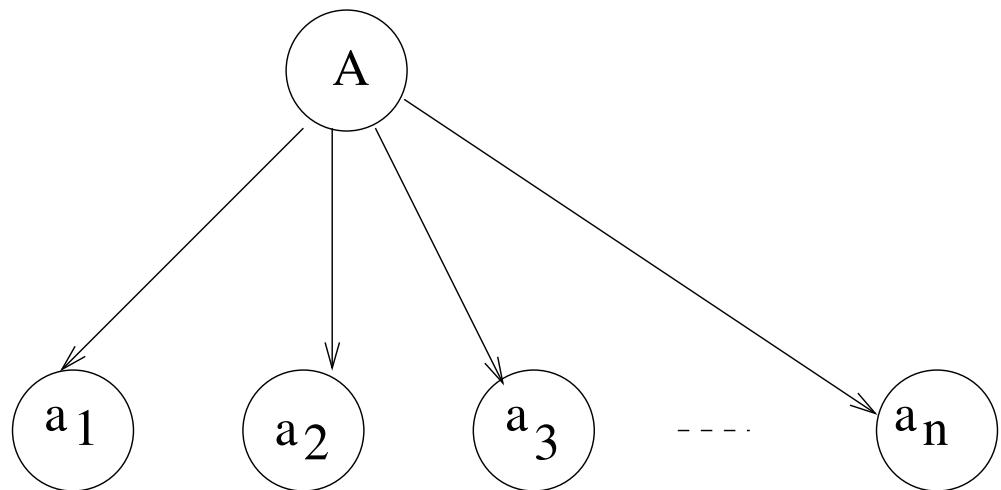
Definition: Rightmost derivation - in each step of a derivation, replace the rightmost variable. (see derivation 2 above).

Derivation Trees (also known as “parse trees”)

A derivation tree represents a derivation but does not show the order productions were applied.

A derivation tree for $G=(V,T,S,P)$:

- root is labeled S
- leaves labeled x , where $x \in T \cup \{\lambda\}$
- nonleaf vertices labeled A , $A \in V$
- For rule $A \rightarrow a_1 a_2 a_3 \dots a_n$, where $A \in V$, $a_i \in (T \cup V \cup \{\lambda\})$,



Example: $G = (\{S, A, B\}, \{a, b, c\}, S, P)$

$$\begin{array}{l} S \rightarrow A c B \\ A \rightarrow a A a \quad | \quad \lambda \\ B \rightarrow B b b \quad | \quad \lambda \end{array}$$

Definitions Partial derivation tree - subtree of derivation tree.

If partial derivation tree has root S then it represents a sentential form.

Leaves from left to right in a derivation tree form the *yield* of the tree.

Yield (w) of derivation tree is such that $w \in L(G)$.

The yield for the example above is

**Example of partial derivation tree
that has root S:**

**The yield of this example is
_____ which is a sentential
form.**

Example of partial derivation tree
that does not have root S:

Membership Given CFG G and string $w \in \Sigma^*$, is $w \in L(G)$?

If we can find a derivation of w , then we would know that w is in $L(G)$.

Motivation

G is grammar for Java
 w is Java program.
Is w syntactically correct?

Example

$G = (\{S\}, \{a, b\}, S, P), P =$

$S \rightarrow SS \mid aSa \mid b \mid \lambda$

$L_1 = L(G) =$

Is $abbab \in L(G)?$

Exhaustive Search Algorithm

For all $i=1,2,3,\dots$

Examine all sentential forms yielded
by i substitutions

Example: Is $abbab \in L(G)$?

Theorem If CFG G does not contain rules of the form

$$\begin{aligned} A &\rightarrow \lambda \\ A &\rightarrow B \end{aligned}$$

where $A, B \in V$, then we can determine if $w \in L(G)$ or if $w \notin L(G)$.

- **Proof:** Consider
 1. length of sentential forms
 2. number of terminal symbols in a sentential form

Example: Let $L_2 = L_1 - \{\lambda\}$. $L_2 = L(G)$ where G is:

$$S \rightarrow SS \mid aa \mid aSa \mid b$$

Show $baaba \notin L(G)$.

$i=1$

1. $S \Rightarrow SS$
2. $S \Rightarrow aSa$
3. $S \Rightarrow aa$
4. $S \Rightarrow b$

$i=2$

1. $S \Rightarrow SS \Rightarrow SSS$
2. $S \Rightarrow SS \Rightarrow aSaS$
3. $S \Rightarrow SS \Rightarrow aaS$
4. $S \Rightarrow SS \Rightarrow bS$
5. $S \Rightarrow aSa \Rightarrow aSSa$
6. $S \Rightarrow aSa \Rightarrow aaSaa$
7. $S \Rightarrow aSa \Rightarrow aaaa$
8. $S \Rightarrow aSa \Rightarrow aba$

Definition Simple grammar (or s-grammar) has all productions of the form:

$$A \rightarrow ax$$

where $A \in V$, $a \in T$, and $x \in V^*$ AND any pair (A, a) can occur in at most one rule.

Ambiguity

Definition: A CFG G is ambiguous if \exists some $w \in L(G)$ which has two distinct derivation trees.

Example Expression grammar

$G = (\{E, I\}, \{a, b, +, *, (,)\}, E, P), P =$

$$\begin{aligned} E &\rightarrow E+E \mid E*E \mid (E) \mid I \\ I &\rightarrow a \mid b \end{aligned}$$

Derivation of $a+b*a$ is:

$E \Rightarrow \underline{E+E} \Rightarrow \underline{I+E} \Rightarrow a+\underline{E} \Rightarrow a+\underline{E*E} \Rightarrow$
 $a+\underline{I*E} \Rightarrow a+b*\underline{E} \Rightarrow a+b*\underline{I} \Rightarrow a+b*a$

Corresponding derivation tree is:

Another derivation of $a+b*a$ is:

$E \Rightarrow \underline{E} * E \Rightarrow \underline{E} + E * E \Rightarrow \underline{I} + E * E \Rightarrow$
 $a + \underline{E} * E \Rightarrow a + \underline{I} * E \Rightarrow a + b * \underline{E} \Rightarrow a + b * \underline{I} \Rightarrow$
 $a + b * a$

Corresponding derivation tree is:

Rewrite the grammar as an unambiguous grammar. (with meaning that multiplication has higher precedence than addition)

$$\begin{aligned} E &\rightarrow E+T \mid T \\ T &\rightarrow T*F \mid F \\ F &\rightarrow I \mid (E) \\ I &\rightarrow a \mid b \end{aligned}$$

There is only one derivation tree for $a+b*a$:

Definition If L is CFL and G is an unambiguous CFG s.t. $L=L(G)$, then L is unambiguous.

Backus-Naur Form of a grammar:

- Nonterminals are enclosed in brackets $<>$
- For “ \rightarrow ” use instead “ $::=$ ”

Sample C++ Program:

```
main ()  
{  
    int a;        int b;        int sum;  
    a = 40;      b = 6;        sum = a + b;  
    cout << "sum is " << sum << endl;  
}
```

“Attempt” to write a CFG for C++ in BNF (Note: `<program>` is start symbol of grammar.)

```
<program> ::= main () <block>
<block>    ::= { <stmt-list> }
<stmt-list> ::= <stmt> | <stmt><stmt-list>
                  <decl> | <decl><stmt-list>
<decl>      ::= int <id> ; | double <id> ;
<stmt>      ::= <asgn-stmt> | <cout-stmt>
<asgn-stmt> ::= <id> = <expr> ;
<expr>       ::= <expr> + <expr>
                  | <expr> * <expr>
                  | ( <expr> ) | <id>
<cout-stmt> ::= cout <out-list> ;
etc., Must expand all nonterminals!
```

So a derivation of the program test would look like:

```
<program> ⇒ main () <block>
            ⇒ main () { <stmt-list> }
            ⇒ main () { <decl> <stmt-list> }
            ⇒ main () { int <id>; <stmt-list> }
            ⇒ main () { int a ; <stmt-list> }
            ⇒* complete C++ program
```

More on CFG for C++

We can write a CFG G s.t.

$L(G) = \{\text{syntactically correct C++ programs}\}.$

But note that $\{\text{semantically correct C++ programs}\} \subset L(G).$

Can't recognize redeclared variables:

```
int x;  
double x;
```

Can't recognize if formal parameters match actual parameters in number and types:

```
declar: int Sum(int a, int b, int c) ...  
call:    newsum = Sum(x,y);
```