

Announcements:

- This is a math course with systems applications. Prereq: CompSci 201, CompSci 230 or equiv.
- Course web page:
[www.cs.duke.edu/courses/
spring26/comp334](http://www.cs.duke.edu/courses/spring26/comp334)
Familiarize yourself with all parts
of the web page.
- Flipped class - reading/quizzes
BEFORE
- Read Chapter 1 in the Linz/Rodger
book for next time.
- Complete the reading quizzes on
Canvas before class.
(Due to Drop/add, QZ01-QZ05
turn off Jan. 22 10, 11:45am!!)
- Course bulletin board: Ed
Discussion (get to from Canvas)

- Course participation required!

What will we do in CompSci 334?

Questions

- Can you write a program to determine if a string is an integer?

9998.89

8abab

789342

Yes.

- Can you do this if your machine had no additional memory other than the program? (can't store any values and look at them again)

Yes.

- Can you write a program to determine if the following are correct arithmetic expressions?

$$((34 + 7 * (18/6)))$$

$$((((((a + b) + c) * d(e + f))))$$

Yes.

- Can you do this if your machine had no additional memory other than the program?

No, need memory
need a stack
or something

- Can you write a program to determine the value of the following expression?

$$((34 + 7 * (18/6)))$$

Yes

- Can you write a program to determine if a file is a valid Java program?

Yes, syntax

- Can you write a program to determine if a Java program given as input will ever halt?

No! hard problem

Language Hierarchy

Grammars

unrestricted grammar

CFG

regular grammar

Automata

Turing machine

pushdown automata

finite automata

All Languages

Rec. Enum. Lang.

Context-free Lang.

Regular Lang.

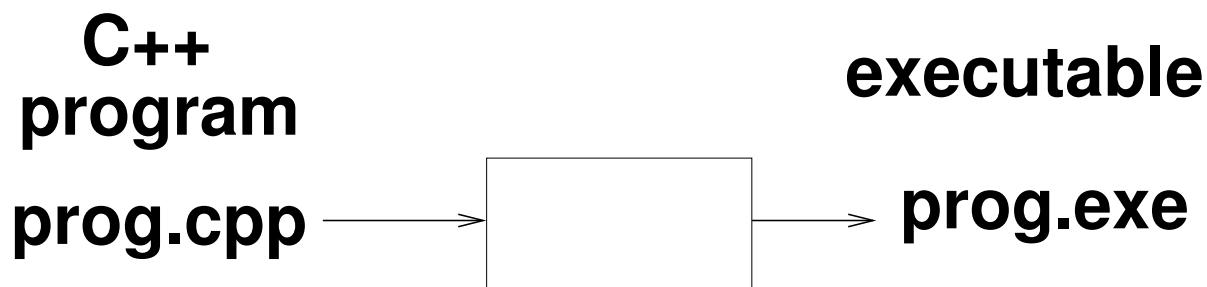
Power of Machines

automata	Can do?	Can't do?
FA (no memory)	recognize integers	recognize arithmetic expression
PDA (stack)	arithmetic expressions	evaluate expr
TM (infinite)	compute expr	decide if halts

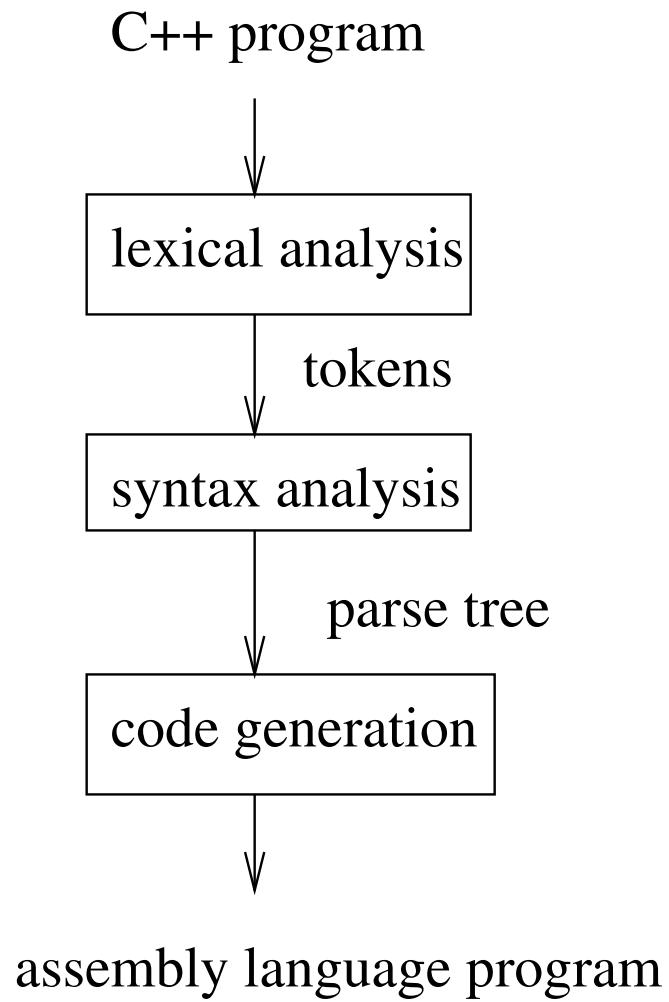
Application

Compiler

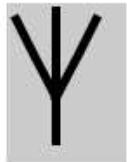
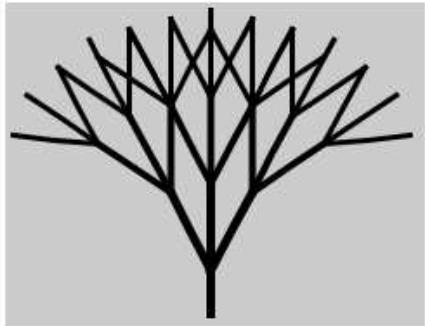
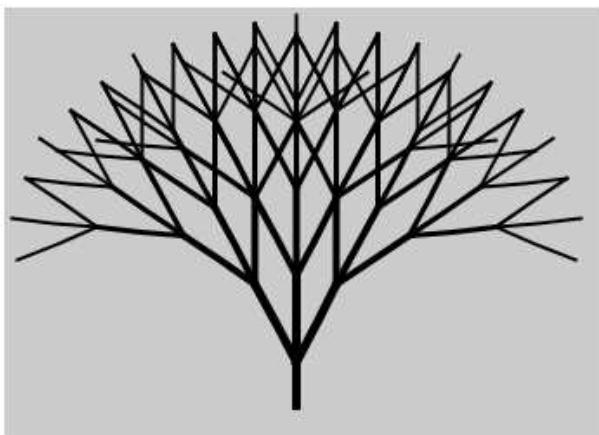
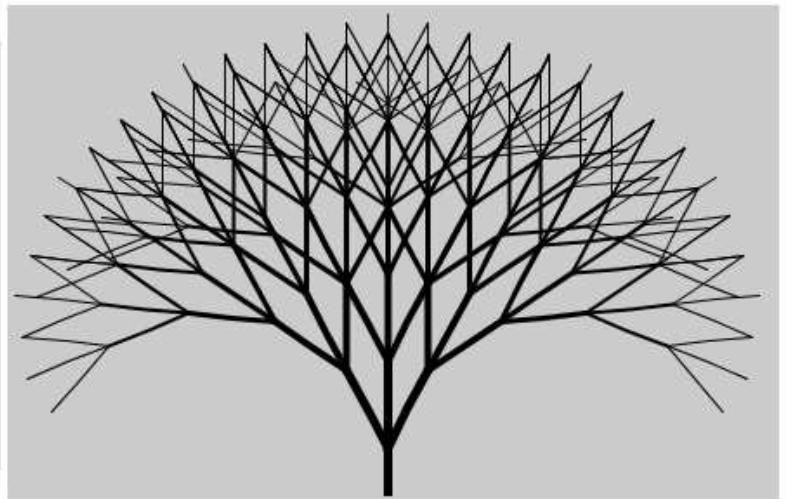
- Our focus - Question: Given a program in some language (say Java or C++) - is it valid?
- Question: language L, program P - is P valid?
- Other things to consider, how is the compilation process different for different programming languages? (Java vs C++?)



Stages of a Compiler



L-Systems - Model the Growth of Plants



Chapter 1 - Set Theory

A Set is a collection of elements.

$$A = \{1, 4, 6, 8\}, B = \{2, 4, 8\},$$

$$C = \{3, 6, 9, 12, \dots\}, D = \{4, 8, 12, 16, \dots\}$$

- (union) $A \cup B = \{1, 2, 4, 6, 8\}$
- (intersection) $A \cap B = \{4, 8\}$
- $C \cap D = \{12, 24, \dots\}$
- (member of) $42 \in C?$ yes
- (subset) $B \subset C?$ No 2+4 not in
- $B \cap A \subseteq D?$ yes
- $|B| = 3$
- (product) $A \times B = \{(1, 2), (1, 4), (1, 8), (4, 2), (4, 4), (4, 8), (6, 2), (6, 4), (6, 8), (8, 2), (8, 4), (8, 8)\}$
- $|A \times B| = 12$
- $\emptyset \in B \cap C?$ NO
- (powerset) $2^B = \{\emptyset, \{2\}, \{4\}, \{8\}, \{2, 4\}, \{2, 8\}, \{4, 8\}, \{2, 4, 8\}\}$

Example What are all the subsets of $\{3, 5\}$?

\emptyset $\{3\}$ $\{5\}$ $\{3, 5\}$

How many subsets does a set S have?

$ S $	number of subsets
0	1
1	2
2	4
3	8
4	16

\sum

$n+1$

How do you prove? Set S has $2^{|S|}$ subsets.

Technique: Proof by Induction

1. Basis: $P(1)$? *smallest instance*

2. I.H.

Assume $P(n)$ is true for $1, 2, \dots, n$

3. I.S.

Show $P(n+1)$ is true (using I.H.)

Set S has $2^{|S|}$ subsets.

Proof:

1. Basis: $|S|=0$ has one element.
 $2^0=1$ ✓

2. I.H. Assume $2^{|S|}$ is equal to the number of subset in S for all $|S| \leq n$

3. I.S. Show for $|S|=n+1$ that there are 2^{n+1} subsets

Take one element out $T \cup \{a\} = S$

There are 2^n subsets in T
 S has all subsets of T plus a copy of each with a added.

OR $2 \times$ number of subsets in T

$$2 \times 2^n = 2^{n+1}$$
 ✓

Ch. 1: 3 Major Concepts

- languages
- grammars
- automata

Languages

- Σ - set of symbols, alphabet
- string - finite sequence of symbols
- language - set of strings defined over Σ

alphabet Σ

Examples

- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $L = \{0, 1, 2, \dots, 12, 13, 14, \dots\}$

$00 \notin L$

- $\Sigma = \{a, b, c\}$
 $L = \{ab, ac, cabb\}$

- $\Sigma = \{a, b\}$
 $L = \{a^n b^n \mid n > 0\}$

$= \{ab, aabb, aaabb, \dots\}$

Notation

- symbols in alphabet: a, b, c, d, ...
- string names: u, v, w, ...

Definition of concatenation

Let $w = a_1 a_2 \dots a_n$ and $v = b_1 b_2 \dots b_m$

Then $w \circ v$ OR $wv = a_1 a_2 \dots a_n b_1 b_2 \dots b_m$

String Operations

strings: $w=abbc$, $v=ab$, $u=c$

- size of string

$$|w| + |v| = 6$$

- concatenation

$$v^3 = vvv = v \circ v \circ v = ababab$$

$$\bullet v^0 = \lambda \quad \text{empty string}$$

$$\bullet w^R = cbba$$

$$\bullet |vv^R w| = 8$$

$$\bullet ab \circ \lambda = ab$$

Definition

Σ^* concatenate 0 or more

Example

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{ \text{r, a, b, aa, ab, ba, bb, aaa, , } \}$$

$$\Sigma^+ = \zeta^* - \zeta \zeta$$

Examples

$$\Sigma = \{a, b, c\}, \quad L_1 = \{ab, bc, aba\},$$

$$L_2 = \{c, bc, bcc\}$$

$$\bullet L_1 \cup L_2 = \{ab, bc, aba, bca\}$$

$$\bullet L_1 \cap L_2 = \{b, c\}$$

- $\overline{L_1} = \sum^* - L_1$
- $\overline{L_1 \cap L_2} = \sum^* - \{bc\}$

$$\bullet \ L_1 \circ L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\} =$$

$\{abc, abbc, abbcc, \underline{bcc}, bcbc, bcbcc, abac, ababc, ababcc\}$

Definition

$$L^0 = \{\lambda\}$$

$$L^2 = L \circ L$$

$$L^3 = L \circ L \circ L$$

$$L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \dots$$

$$L^+ = L^1 \cup L^2 \cup L^3 \dots$$

Grammars

Grammar for english

<sentence> →

<subject><verb><d.o.>

<subject> → **<noun>** |

<article><noun>

<verb> → hit | ran | ate

<d.o.> → **<article><noun>** | **<noun>**

<noun> → Fritz | ball

<article> → the | an | a

Examples (derive a sentence)

Fritz hit the ball.

```
<sentence> -> <subject><verb><d.o>
-> <noun><verb><d.o>
-> Fritz <verb><d.o.>
-> Fritz hit <d.o.>
-> Fritz hit <article><noun>
-> Fritz hit the <noun>
-> Fritz hit the ball
```

Can we also derive the sentences?

The ball hit Fritz.

yes

The ball ate the ball

yes

Syntactically correct?

yes

Semantically correct?

no?

Grammar

$G = (V, T, S, P)$ where

- V - variables (or nonterminals)
- T - terminals
- S - start variable ($S \in V$)
- P - productions (rules)

$x \rightarrow y \quad x \in (V \cup T)^+, \quad y \in (V \cup T)^*$

Definition

$w \Rightarrow z \quad w \text{ derives } z$

$w \xrightarrow{*} z \quad \text{derives in 0 or more steps}$

$w \xrightarrow{+} z \quad \text{derives in 1 or more steps}$

Definition of Language of a grammar - $L(G)$

$G = (V, T, S, P)$

$L(G) = \{w \in T^* \mid S \xrightarrow{*} w\}$

Example

$$G = (\{S\}, \{a, b\}, S, P)$$

$$P = \{S \rightarrow aaS, S \rightarrow b\}$$

$$L(G) = \{b, aab, aaaab, \dots \dots \dots \}$$
$$= \{(aa)^n b \mid n \geq 0\}$$

STOPPED

Example

$$L(G) = \{a^n c c b^n \mid n > 0\}$$

$$G =$$

Example

$$G = (\{S\}, \{a, b\}, S, P)$$

$$P = \{S \rightarrow aSb, S \rightarrow SS, S \rightarrow ab\}$$

Which of these strings

$aabb, abab, abba, babab$ can be generated by this grammar? Show the derivations.

$$L(G) =$$

Automata

Abstract model of a digital computer

