

Section: Finite Automata

Deterministic Finite Acceptor (or Automata)

A DFA = $(Q, \Sigma, \delta, q_0, F)$



where

Q is finite set of states

Σ is tape (input) alphabet

q_0 is initial state

$F \subseteq Q$ is set of final states.

$\delta: Q \times \Sigma \rightarrow Q$

Example: DFA that accepts even binary numbers.

Transition Diagram:

diagram on next page

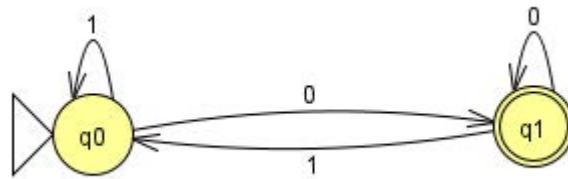
$$M = (Q, \Sigma, \delta, q_0, F) = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$$

Tabular Format

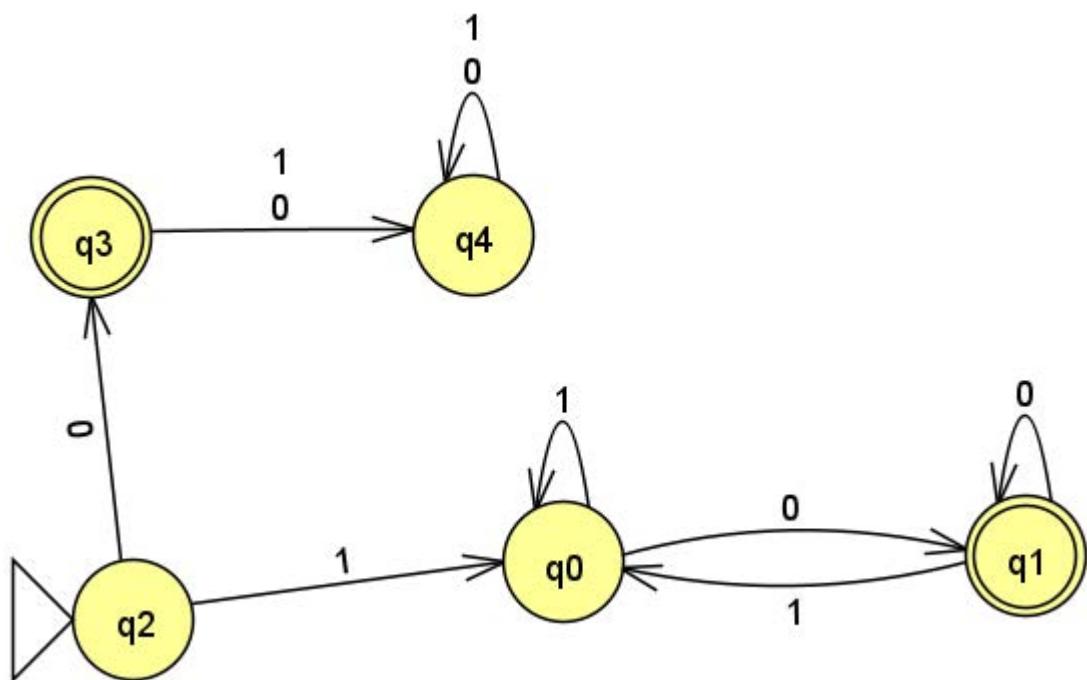
	0	1
q0	q1	q0
q1	q1	q0

Example of a move: $\delta(q_0, 1) = q_0$

DFA for even binary numbers (allowing leading zeros)



DFA for even binary numbers, not allowing leading zeros, and showing a trap state (q_4).



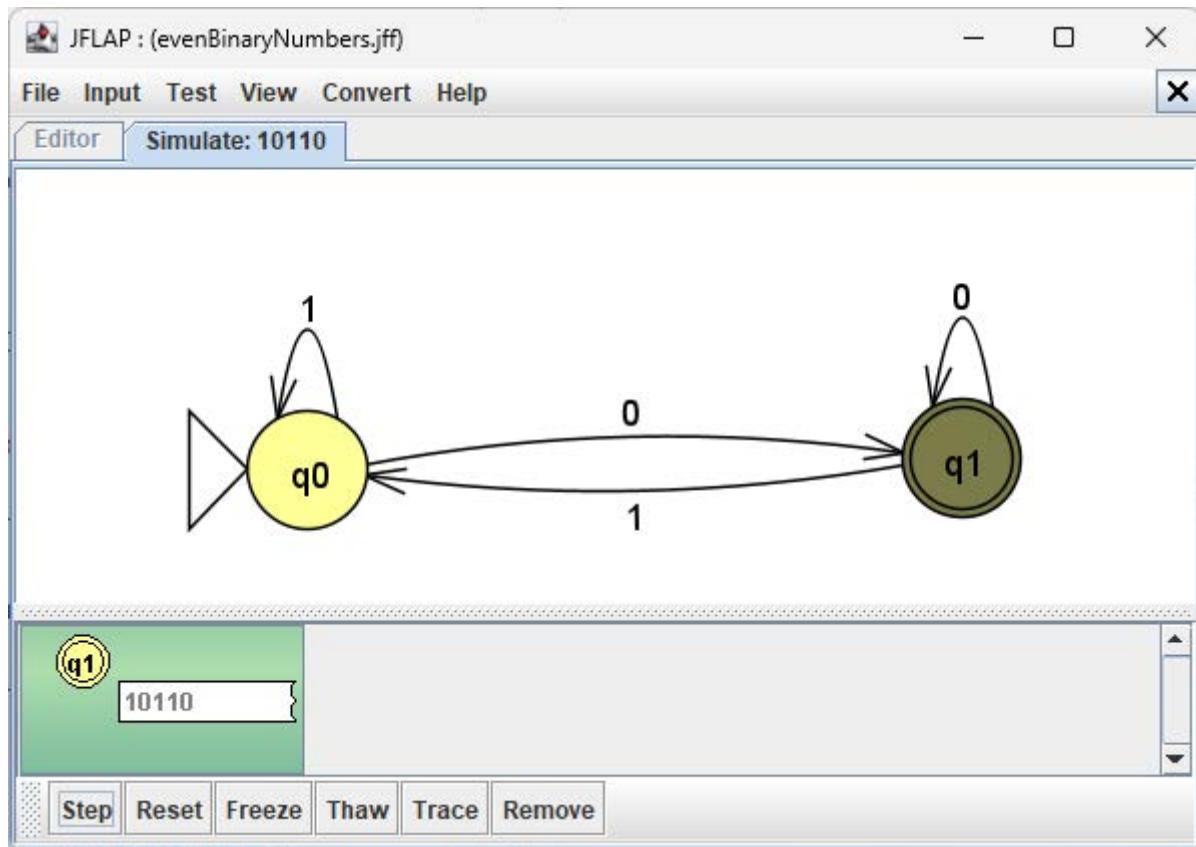
You do not have to show trap states in this course.

Algorithm for DFA:

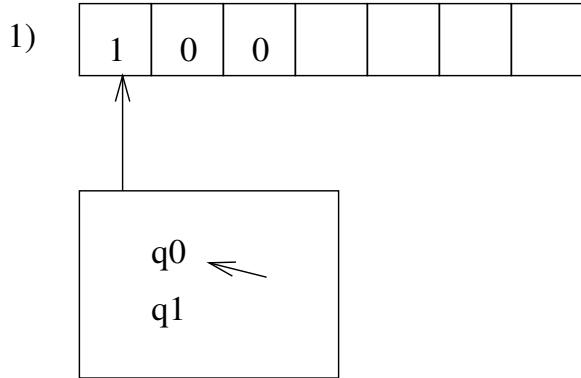
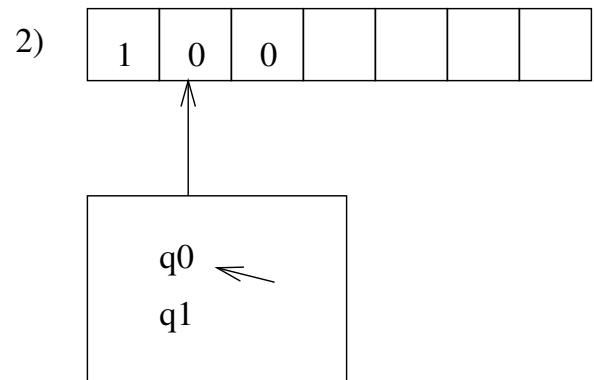
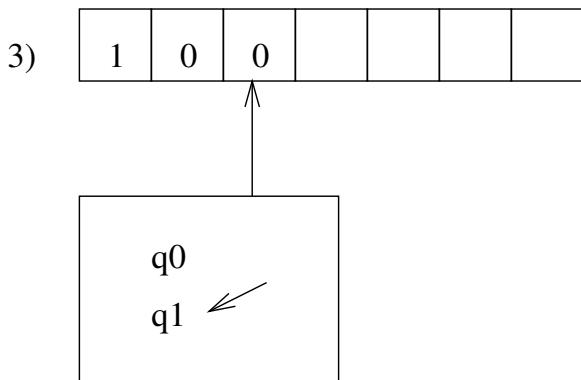
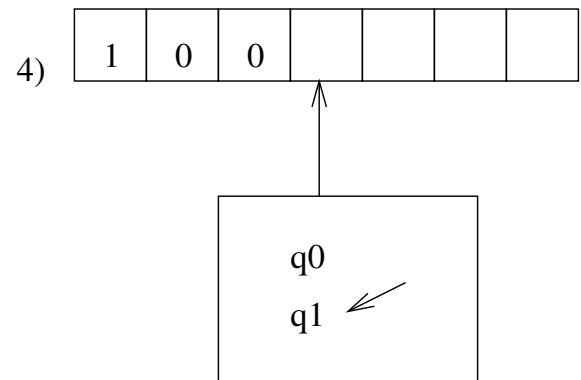
Start in start state with input on tape
 $q = \text{current state}$
 $s = \text{current symbol on tape}$
while ($s \neq \text{blank}$) do
 $q = \delta(q, s)$
 $s = \text{next symbol to the right on tape}$
if $q \in F$ then accept

Example of a trace: 11010

[Did in JFLAP](#)



Pictorial Example of a trace for 100:



Definition:

$$\delta^*(q, \lambda) = q$$

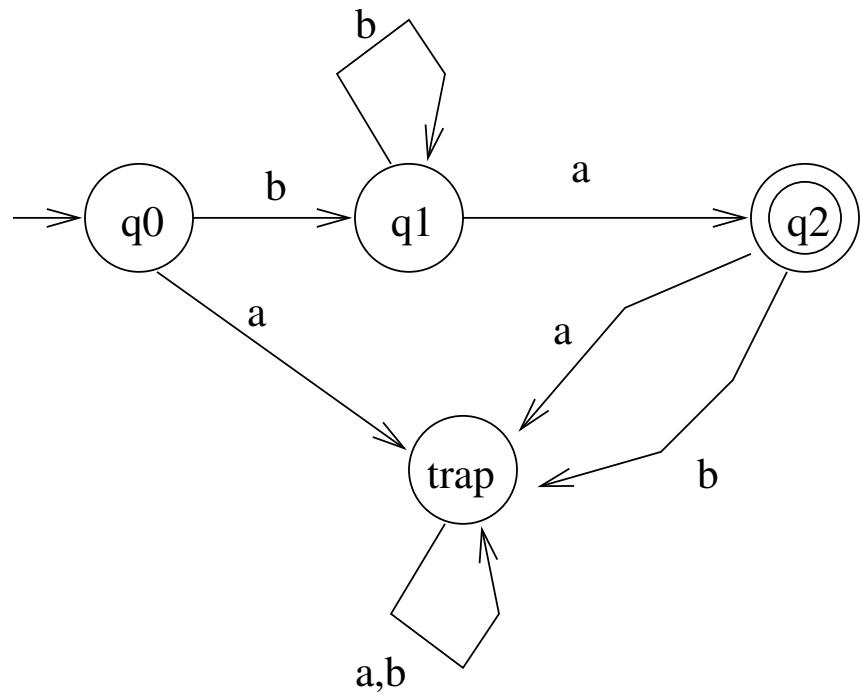
$$\delta^*(q, wa) = \delta(\delta^*(q, w), a)$$

Definition The language accepted by a DFA $M = (Q, \Sigma, \delta, q_0, F)$ is set of all strings on Σ accepted by M . Formally,

$$L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \in F\}$$

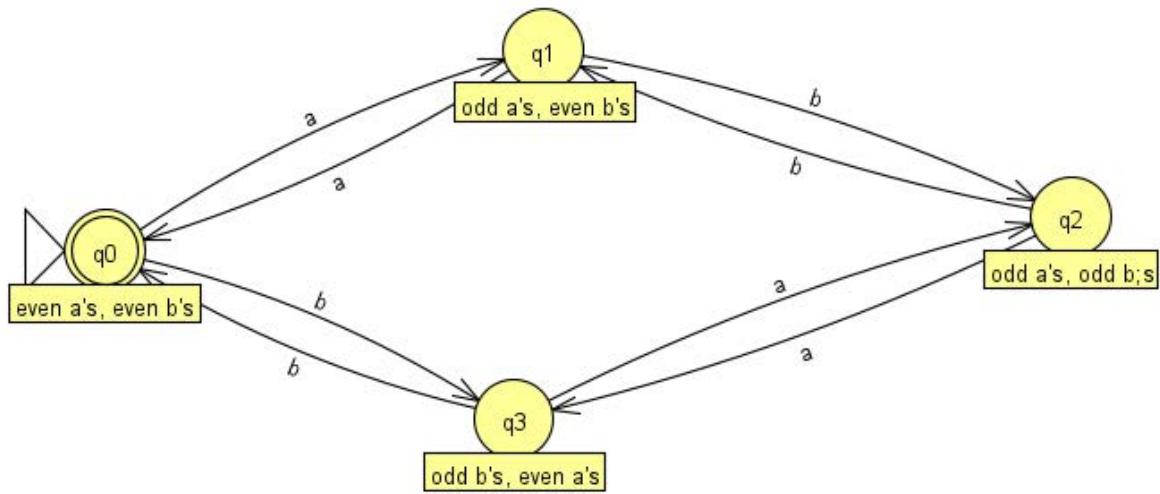
Trap State

Example: $L(M) = \{b^n a \mid n \geq 0\}$

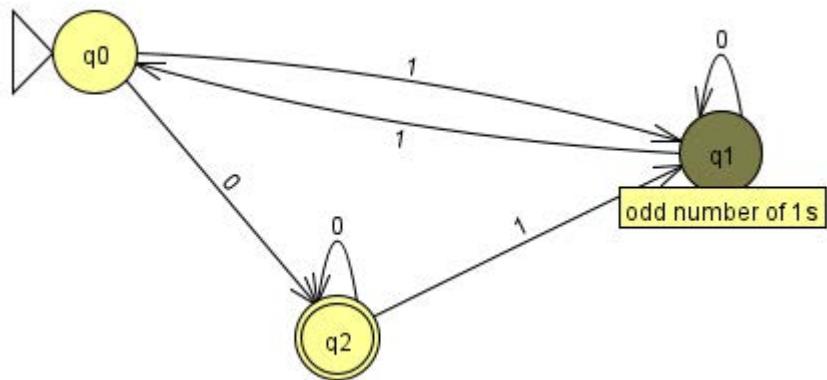


Example:

$L = \{w \in \Sigma^* \mid w \text{ has an even number of a's and an even number of b's}\}$



Example: DFA that accepts even binary numbers that have an even number of 1's.



Note this has leading zeros, how would you do it without the leading zeros?

Definition A language L is regular iff there exists DFA M s.t. $L=L(M)$.

Stopped here!

Chapter 2.2

Nondeterministic Finite Automata (or Acceptor)

Definition

An **NFA** = $(Q, \Sigma, \delta, q_0, F)$

where

Q is finite set of states

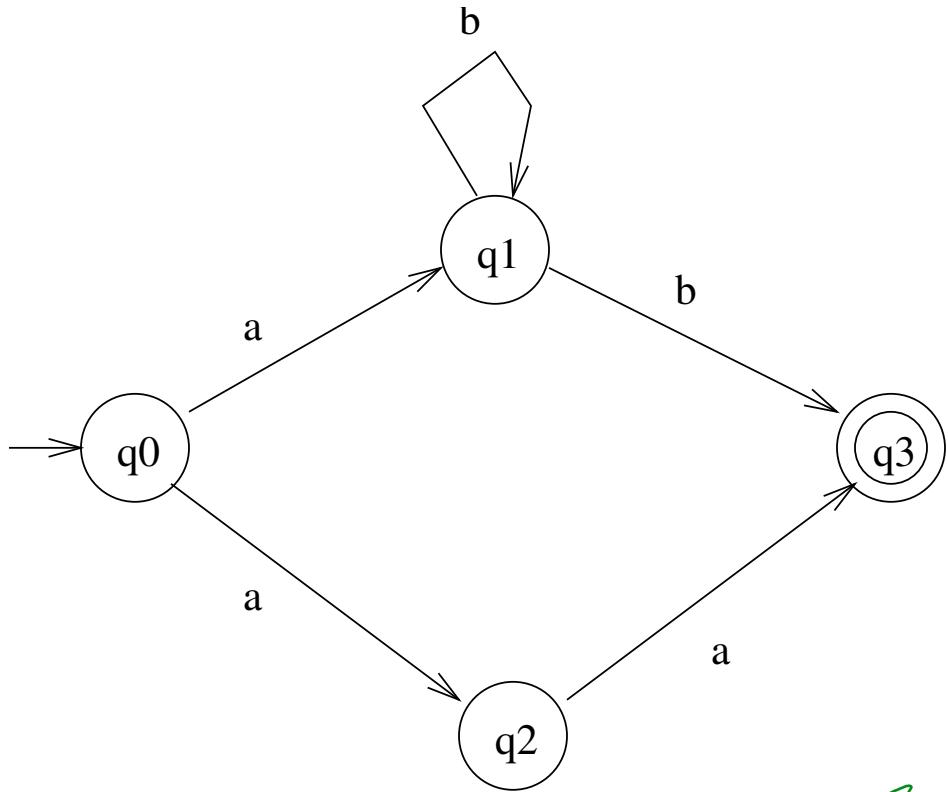
Σ is tape (input) alphabet

q_0 is initial state

$F \subseteq Q$ is set of final states.

$\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q$

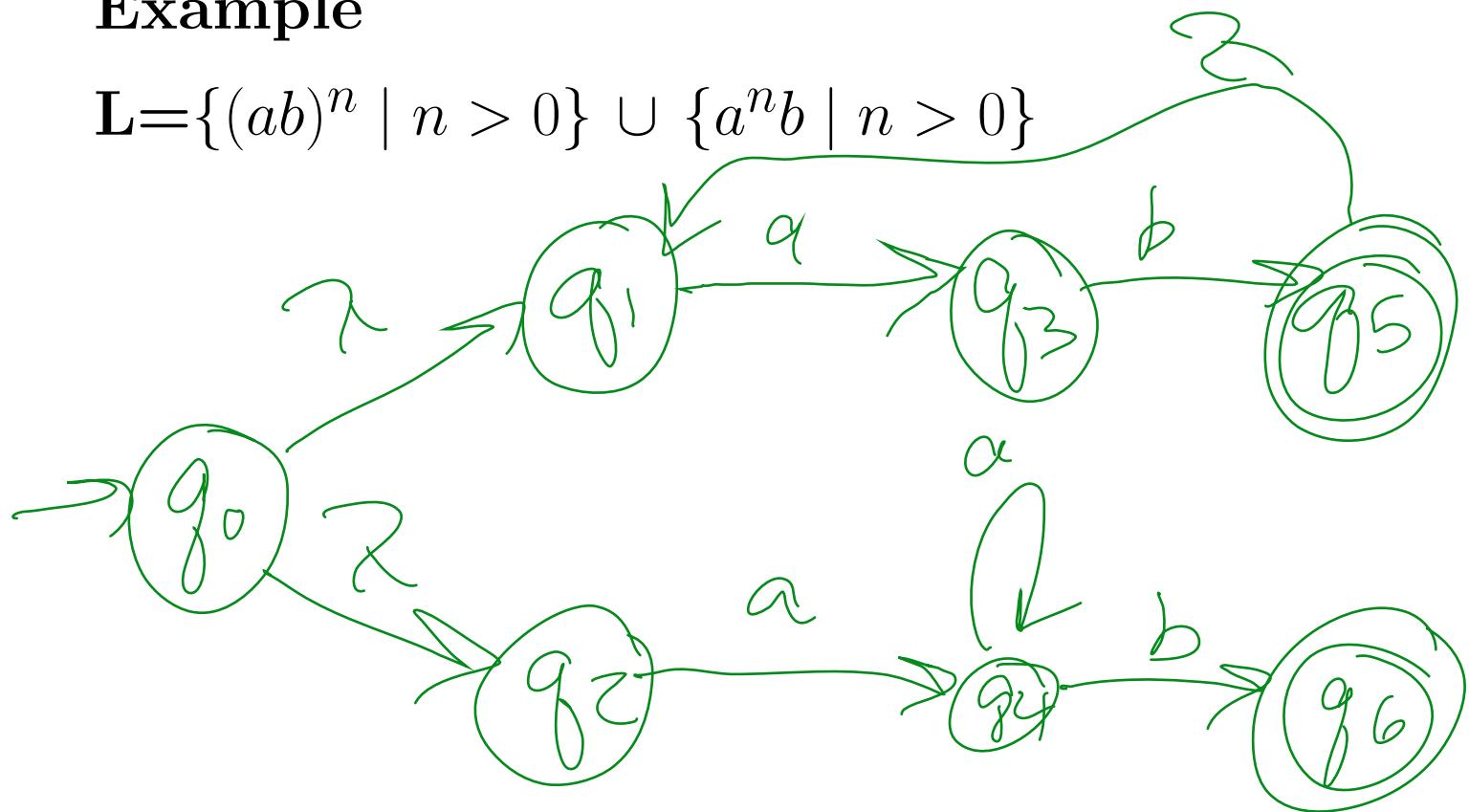
Example



Note: In this example $\delta(q_0, a) = \{q_1, q_2\}$
 $L = \{aa\} \cup \{ab^n \mid n \geq 0\}$

Example

$$L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\}$$



abab $\in L$ $b, z \notin L$

Definition $q_j \in \delta^*(q_i, w)$ if and only if there is a walk from q_i to q_j labeled w .

Example From previous example:

$$\delta^*(q_0, ab) = \{q_1, q_5, q_6\}$$

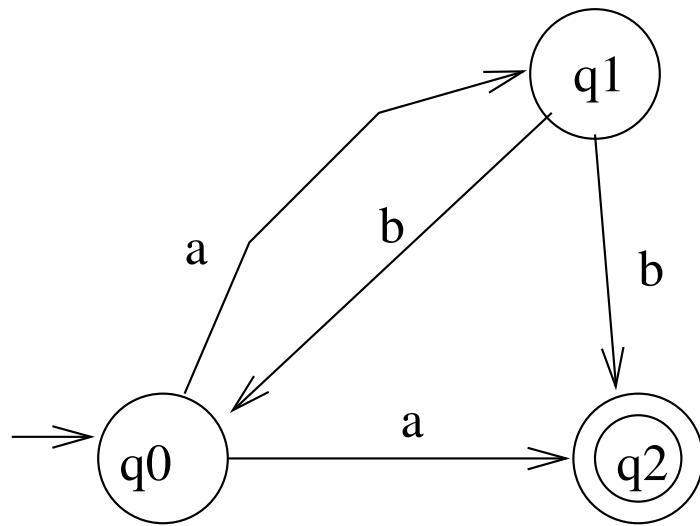
$$\delta^*(q_0, aba) = \{q_3\}$$

Definition: For an NFA M ,

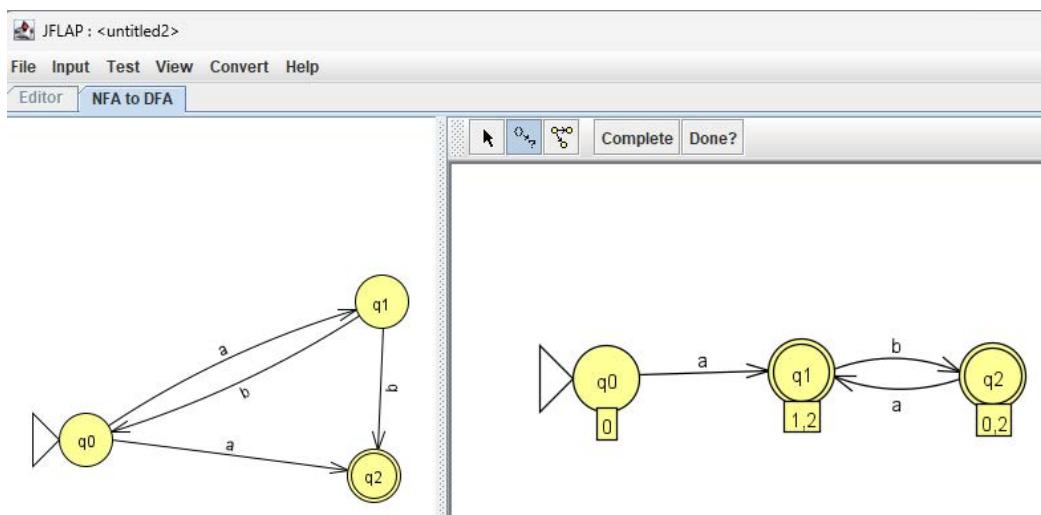
$$L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}$$

2.3 NFA vs. DFA: Which is more powerful?

Example:



Convert NFA to DFA:



Theorem Given an NFA

$M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D = (Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N .

$$Q_D = 2^{Q_N}$$
$$F_D = \{ Q \in Q_D \mid \exists q_i \in Q \text{ with } q_i \in F_N \}$$

$$\delta_D : Q_D \times \Sigma \rightarrow Q_D$$

Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge

(a) Choose a state $A = \{q_i, q_j, \dots, q_k\}$
with missing edge for $a \in \Sigma$

(b) Compute $B =$

$$\delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \dots \cup \delta^*(q_k, a)$$

(c) Add state B if it doesn't exist

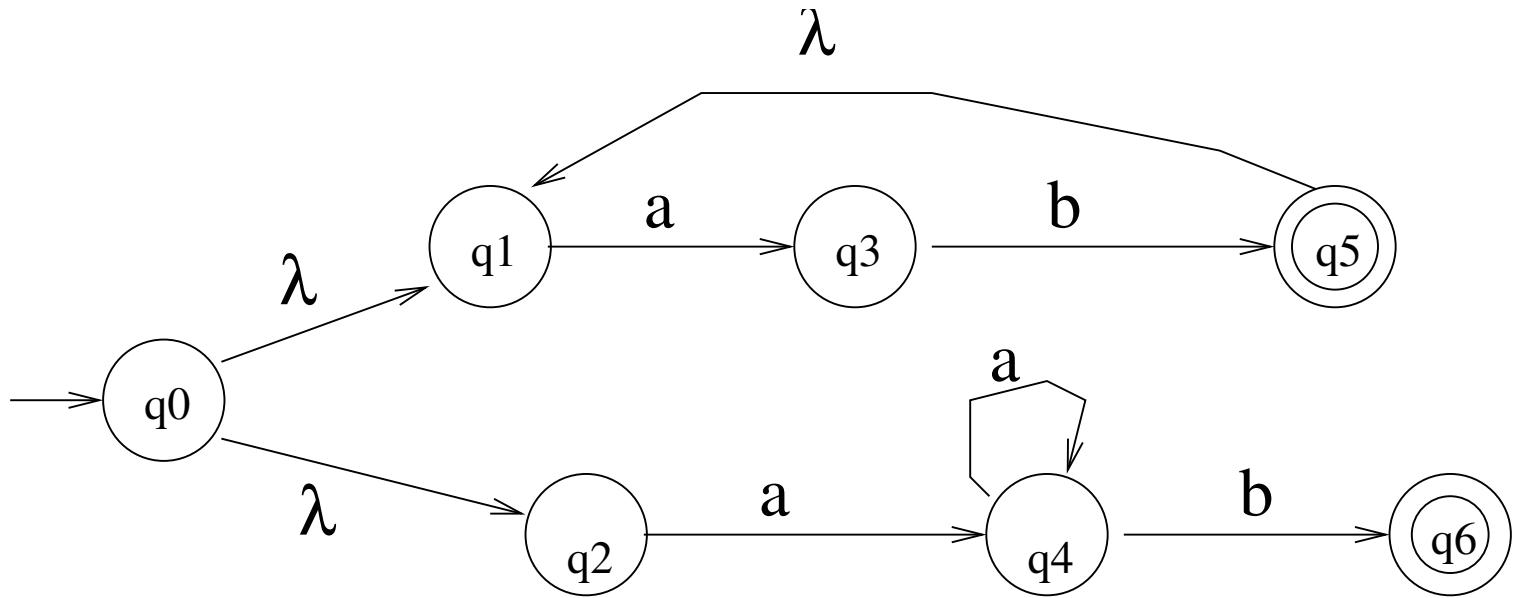
(d) add edge from A to B with label
a

3. Identify final states

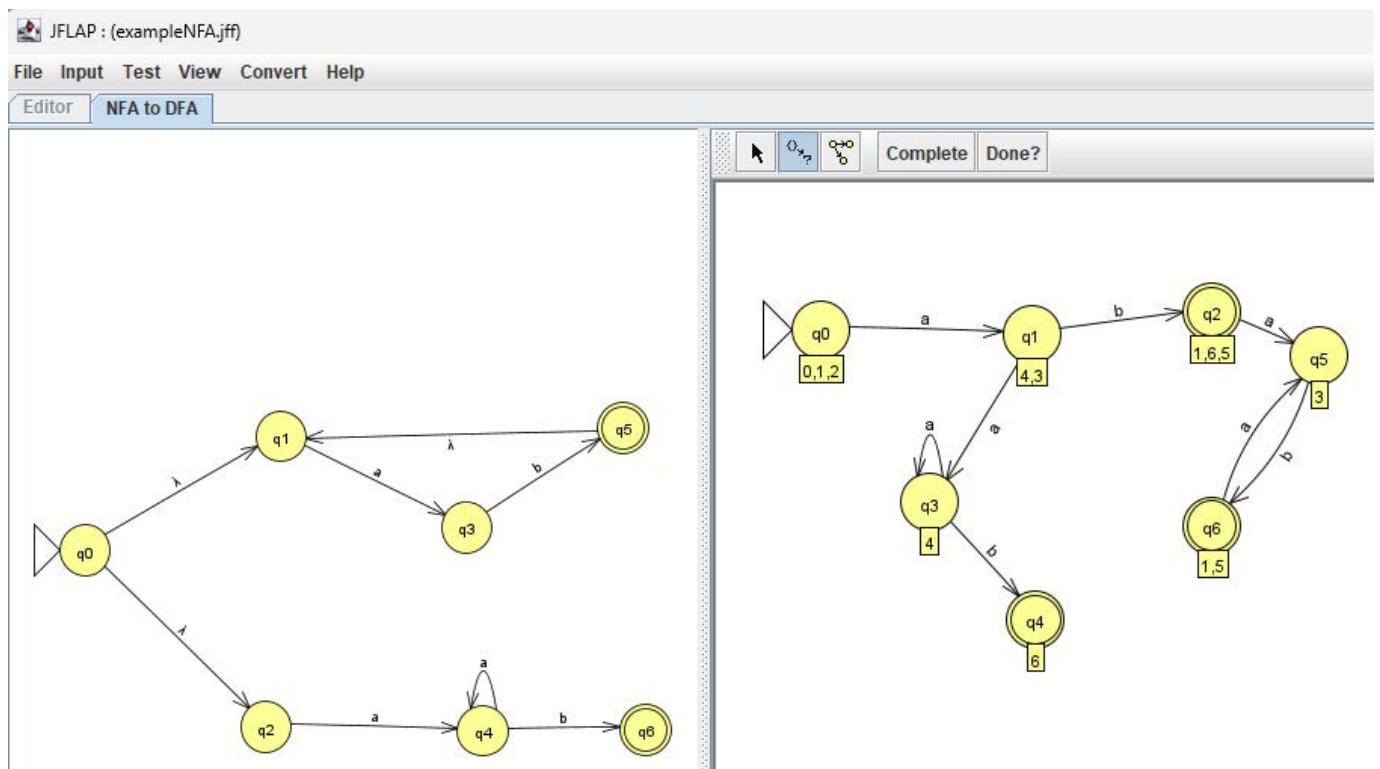
4. if $\lambda \in L(M_N)$ then make the start
state final.

include any states
reachable
by

Example:



Convert NFA to DFA:



Properties and Proving - Problem 1

Consider the property

Replace_one_a_with_b or R1awb for short. If L is a regular, prove $R1awb(L)$ is regular.

The property $R1awb$ applied to a language L replaces one a in each string with a b . If a string does not have an a , then the string is not in $R1awb(L)$.

Example 1: Consider $L = \{aaab, bbaa\}$

$$R1awb(L) = \{baab, abab, aabb, bbba, bbab\}$$

Example 2: Consider $\Sigma = \{a, b\}$, $L = \{w \in \Sigma^* \mid w \text{ has an even number of } a's \text{ and an even number of } b's\}$

$$R1awb(L) = \{w \in \Sigma^* \mid w \text{ has an odd number of } a's \text{ and an odd number of } b's\}$$

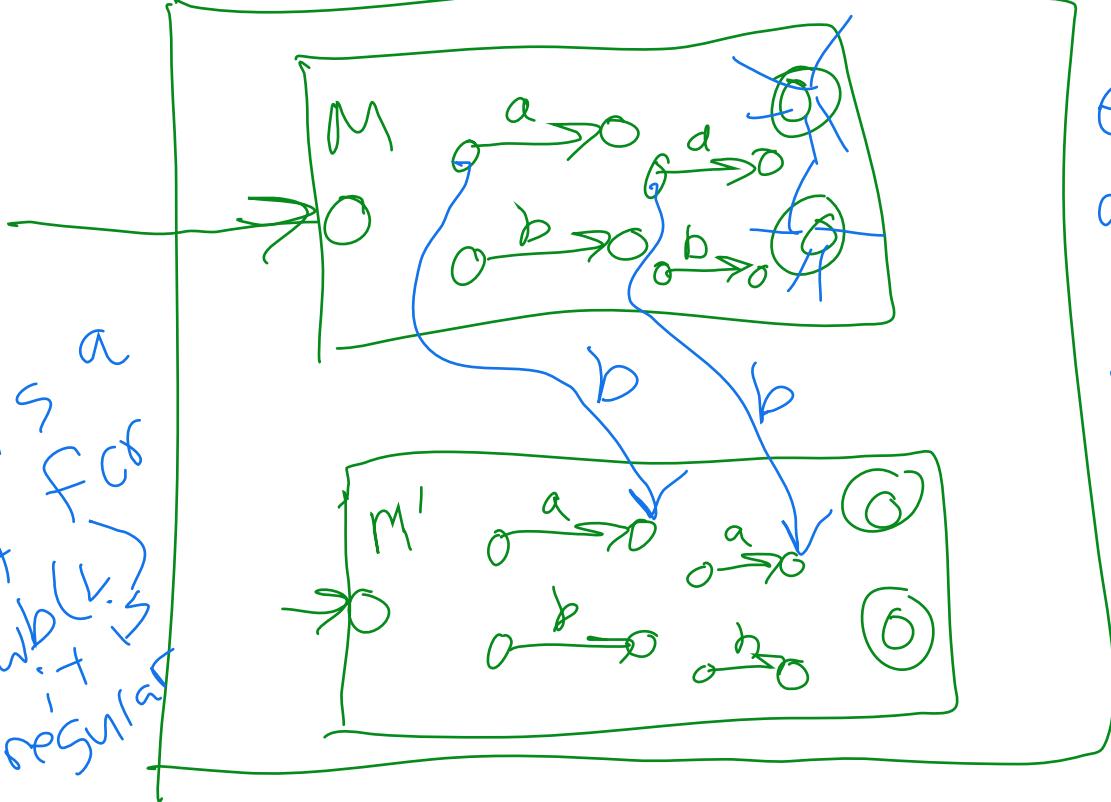
Proof:

Assume L is regular

\Rightarrow DFA M

M' is a copy of M

This is a
DFA
Plan it
so regular



See handout on January 15 on our calendar page on how to write this up as a proof.

STOPPED HERE

Properties and Proving - Problem 2

Consider the property

Truncate_all_preceeding_b's or
TruncPreb for short. If L is a regular,
prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b's in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider $L = \{aab, bbaa\}$

$\text{TruncPreb}(L) =$

Example 2: Consider $L = \{(bba)^n \mid n > 0\}$

$\text{TruncPreb}(L) =$

Proof:

Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable

These states form a new state

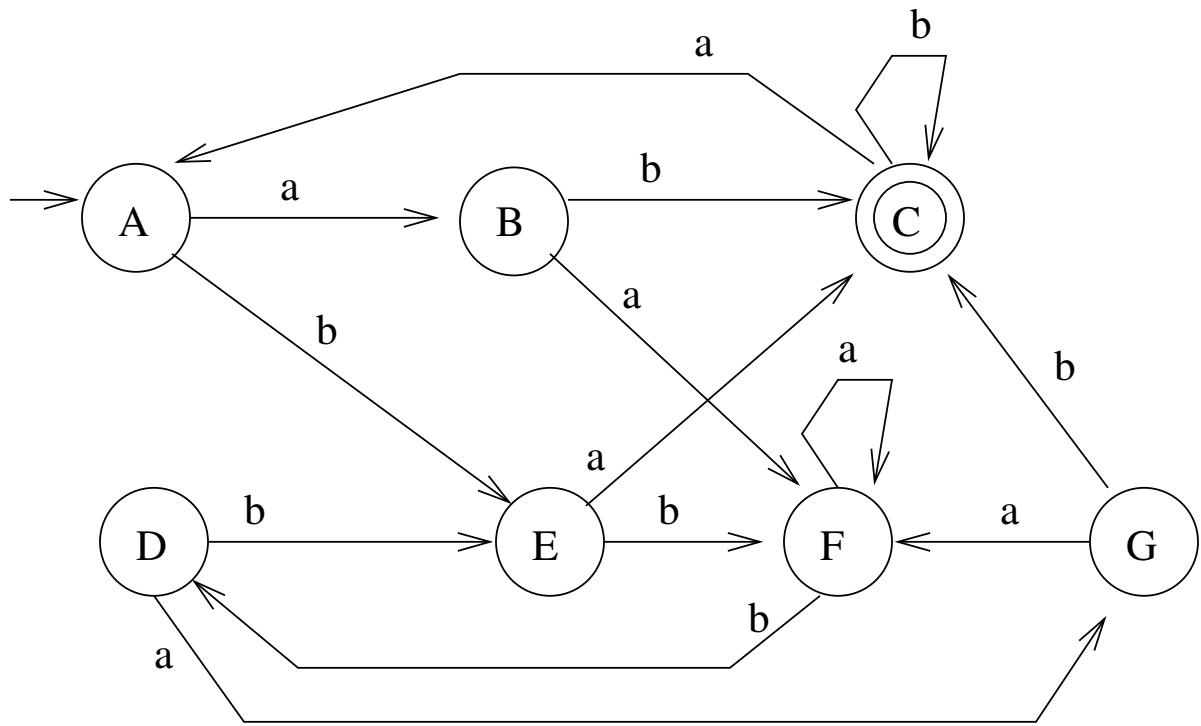
Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

$$\begin{aligned}\delta^*(q, w) \in F &\Rightarrow \delta^*(p, w) \in F \\ \delta^*(p, w) \notin F &\Rightarrow \delta^*(q, w) \notin F\end{aligned}$$

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

$$\begin{aligned}\delta^*(q, w) \in F &\Rightarrow \delta^*(p, w) \notin F \text{ OR} \\ \delta^*(q, w) \notin F &\Rightarrow \delta^*(p, w) \in F\end{aligned}$$

Example:



Example:

