

Section: Properties of Regular Languages

Example

$$L = \{a^n b a^n \mid n > 0\}$$

NOT regular |

Closure Properties

A set is closed over an operation if

$$L_1, L_2 \in \text{class}$$

$$L_1 \text{ op } L_2 = L_3$$

$$\Rightarrow L_3 \in \text{class}$$

$L = \{x \mid x \text{ is a positive even integer}\}$

L is closed under

addition? *yes*

multiplication? *yes*

subtraction? *No*

$$6 - 10 = -4$$

division? *No*

Closure of Regular Languages

Theorem 4.1 If L_1 and L_2 are regular languages, then

$$L_1 \cup L_2$$

$$L_1 \cap L_2$$

$$L_1 L_2$$

$$\bar{L}_1$$

$$L_1^*$$

are regular languages.

Proof(sketch)

L_1 and L_2 are regular languages

$\Rightarrow \exists$ reg. expr. r_1 and r_2 s.t.

$L_1 = L(r_1)$ and $L_2 = L(r_2)$

$r_1 + r_2$ is r.e. denoting $L_1 \cup L_2$

\Rightarrow closed under union

$r_1 r_2$ is r.e. denoting $L_1 L_2$

\Rightarrow closed under concatenation ✓

r_1^* is r.e. denoting L_1^*

\Rightarrow closed under star-closure ✓

complementation:

L_1 is reg. lang.

$\Rightarrow \exists$ DFA M s.t. $L_1 = L(M)$

Construct M' s.t.

Final states \rightarrow non-Final
non-Final states \rightarrow final

have M' DFA for \bar{L}

Show $w \in L(M') \Leftrightarrow w \in \bar{L}$

intersection:

L_1 and L_2 are reg. lang.

$\Rightarrow \exists$ DFA M_1 and M_2 s.t.

$L_1 = L(M_1)$ and $L_2 = L(M_2)$

$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$

$M_2 = (P, \Sigma, \delta_2, p_0, F_2)$

Construct $M' = (Q', \Sigma, \delta', (q_0, p_0), F')$

$Q' = Q \times P$

δ' : $\delta'((q_i, p_j), a) = (q_k, p_l)$ if

$\delta_1(q_i, a) = q_k \in F_1$ and

$\delta_2(p_j, a) = p_l \in F_2$

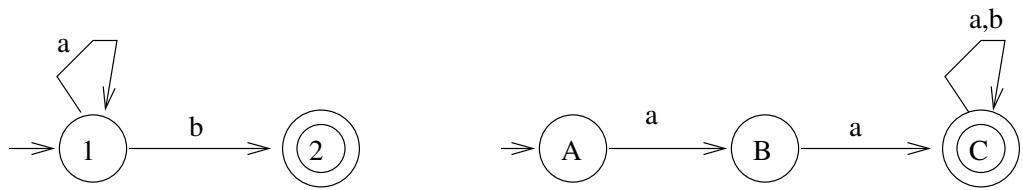
$F' = \{(q_i, p_j) \in Q' \mid q_i \in F_1 \text{ and } p_j \in F_2\}$

Show $w \in L(M') \Leftrightarrow w \in L_1 \cap L_2$

\Rightarrow closed under intersection

STOPPED

Example:



Regular languages are closed under

reversal L^R

difference $L_1 - L_2$

right quotient L_1 / L_2

homomorphism $h(L)$

Right quotient

Def: $L_1/L_2 = \{x \mid xy \in L_1 \text{ for some } y \in L_2\}$

Example:

$$L_1 = \{a^*b^* \cup b^*a^*\}$$

$$L_2 = \{b^n \mid n \text{ is even, } n > 0\}$$

$$L_1/L_2 =$$

Theorem If L_1 and L_2 are regular,
then L_1/L_2 is regular.

Proof (sketch)

\exists DFA $M = (Q, \Sigma, \delta, q_0, F)$ s.t. $L_1 = L(M)$.

Construct DFA $M' = (Q, \Sigma, \delta, q_0, F')$

For each state i do

 Make i the start state (representing L'_i)

QED.

Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$h: \Sigma \rightarrow \Gamma^*$$

Example:

$$\Sigma = \{a, b, c\}, \Gamma = \{0, 1\}$$

$$h(a) = 11$$

$$h(b) = 00$$

$$h(c) = 0$$

$$h(bc) =$$

$$h(ab^*) =$$

Questions about regular languages :

L is a regular language.

- Given L , Σ , $w \in \Sigma^*$, is $w \in L$?

- Is L empty?

- Is L infinite?

- Does $L_1 = L_2$?

Identifying Nonregular Languages

If a language L is finite, is L regular?

If L is infinite, is L regular?

- $L_1 = \{a^n b^m \mid n > 0, m > 0\} =$
- $L_2 = \{a^n b^n \mid n > 0\}$

Prove that $L_2 = \{a^n b^n \mid n > 0\}$ is ?

- Proof: Suppose L_2 is regular.
 $\Rightarrow \exists$ DFA M that recognizes L_2

Pumping Lemma: Let L be an infinite regular language. \exists a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

$$\begin{aligned}|xy| &\leq m \\|y| &\geq 1 \\xy^i z &\in L \text{ for all } i \geq 0\end{aligned}$$

To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.

Assume L is regular.

\Rightarrow L satisfies the pumping lemma.

Choose a long string w in L,

$|w| \geq m$.

Show that there is NO division of w into xyz (must consider all possible divisions) such that $|xy| \leq m$, $|y| \geq 1$ and $xy^i z \in L \forall i \geq 0$.

The pumping lemma does not hold.
Contradiction!

\Rightarrow L is not regular. QED.

Example $L = \{a^n cb^n \mid n > 0\}$

L is not regular.

• Proof:

Assume L is regular.

\Rightarrow the pumping lemma holds.

Choose $w =$

Example $L = \{a^n b^{n+s} c^s \mid n, s > 0\}$

L is not regular.

• **Proof:**

Assume L is regular.

\Rightarrow the pumping lemma holds.

Choose $w =$

So the partition is:

Example $\Sigma = \{a, b\}$,
 $L = \{w \in \Sigma^* \mid n_a(w) > n_b(w)\}$

L is not regular.

• **Proof:**

Assume L is regular.

\Rightarrow the pumping lemma holds.

Choose $w =$

So the partition is:

Example $L = \{a^3b^n c^{n-3} \mid n > 3\}$

(shown in detail on handout)

L is not regular.

To Use Closure Properties to prove L is not regular:

- Proof Outline:

Assume L is regular.

Apply closure properties to L and other regular languages, constructing L' that you know is not regular.

closure properties $\Rightarrow L'$ is regular.

Contradiction!

L is not regular. QED.

Example $L = \{a^3b^n c^{n-3} \mid n > 3\}$

L is not regular.

- **Proof:** (proof by contradiction)

Assume L is regular.

Define a homomorphism $h : \Sigma \rightarrow \Sigma^*$

$$h(a) = a \quad h(b) = a \quad h(c) = b$$

$$h(L) =$$

Example $L = \{a^n b^m a^m \mid m \geq 0, n \geq 0\}$

L is not regular.

- Proof: (proof by contradiction)

Assume L is regular.

Example: $L_1 = \{a^n b^n a^n \mid n > 0\}$

L_1 is not regular.