

Section: Properties of Regular Languages

Example

$$L = \{a^n b a^n \mid n > 0\}$$

NOT regular !

Closure Properties

A set is closed over an operation if

$$L_1, L_2 \in \text{class}$$

$$L_1 \text{ op } L_2 = L_3$$

$$\Rightarrow L_3 \in \text{class}$$

$L = \{x \mid x \text{ is a positive even integer}\}$

L is closed under

addition? *yes*

multiplication? *yes*

subtraction? *No*

$$6 - 10 = -4$$

division? *No*

Closure of Regular Languages

Theorem 4.1 If L_1 and L_2 are regular languages, then

$$L_1 \cup L_2$$

$$L_1 \cap L_2$$

$$L_1 L_2$$

$$\bar{L}_1$$

$$L_1^*$$

are regular languages.

Proof(sketch)

L_1 and L_2 are regular languages

$\Rightarrow \exists$ reg. expr. r_1 and r_2 s.t.

$L_1 = L(r_1)$ and $L_2 = L(r_2)$

$r_1 + r_2$ is r.e. denoting $L_1 \cup L_2$

\Rightarrow closed under union

$r_1 r_2$ is r.e. denoting $L_1 L_2$

\Rightarrow closed under concatenation ✓

r_1^* is r.e. denoting L_1^*

\Rightarrow closed under star-closure ✓

complementation:

L_1 is reg. lang.

$\Rightarrow \exists$ DFA M s.t. $L_1 = L(M)$

Construct M' s.t.

Final states \rightarrow non-Final
non-Final states \rightarrow final

have M' DFA for \bar{L}

Show $w \in L(M') \Leftrightarrow w \in \bar{L}$

intersection:

L_1 and L_2 are reg. lang.

$\Rightarrow \exists$ DFA M_1 and M_2 s.t.

$L_1 = L(M_1)$ and $L_2 = L(M_2)$

$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$

$M_2 = (P, \Sigma, \delta_2, p_0, F_2)$

Construct $M' = (Q', \Sigma, \delta', (q_0, p_0), F')$

$Q' = Q \times P$

δ' : $\delta'((q_i, p_j), a) = (q_k, p_l)$ if

$\delta_1(q_i, a) = q_k \in F_1$ and

$\delta_2(p_j, a) = p_l \in F_2$

$F' = \{(q_i, p_j) \in Q' \mid q_i \in F_1 \text{ and } p_j \in F_2\}$

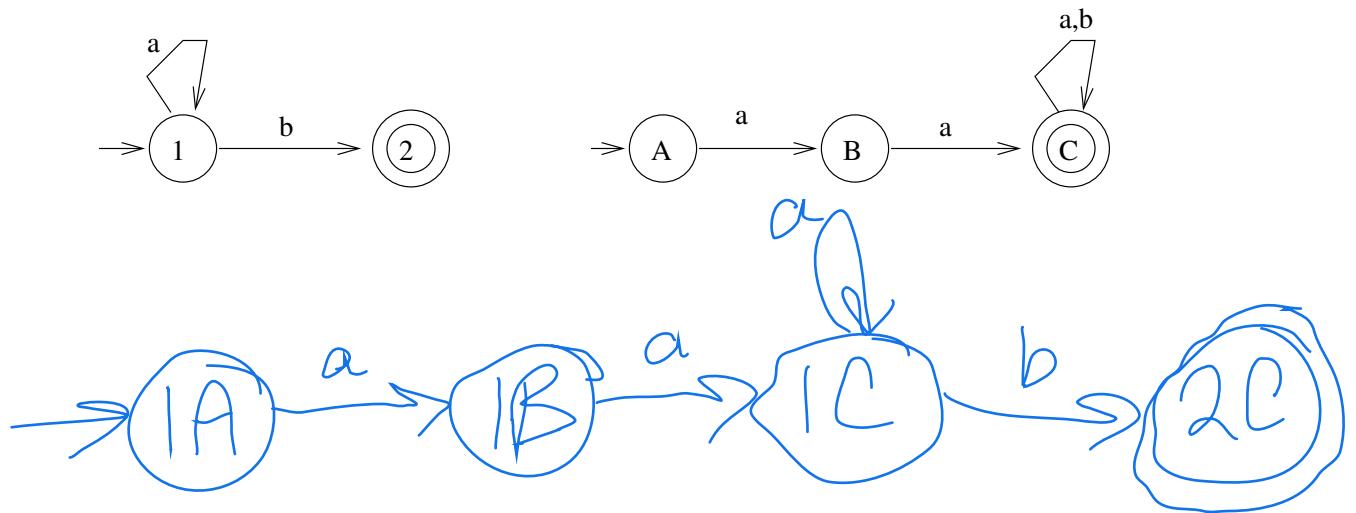
Show $w \in L(M') \Leftrightarrow w \in L_1 \cap L_2$

\Rightarrow closed under intersection

STOPPED

STOPPED HERE

Example:



Regular languages are closed under

reversal L^R

difference $L_1 - L_2$

right quotient L_1 / L_2

homomorphism $h(L)$

Right quotient

Def: $L_1/L_2 = \{x \mid xy \in L_1 \text{ for some } y \in L_2\}$

Example:

$$L_1 = \{a^*b^* \cup b^*a^*\}$$

$$L_2 = \{b^n \mid n \text{ is even, } n > 0\}$$

$$L_1/L_2 = \{a^* b^*\}$$

Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

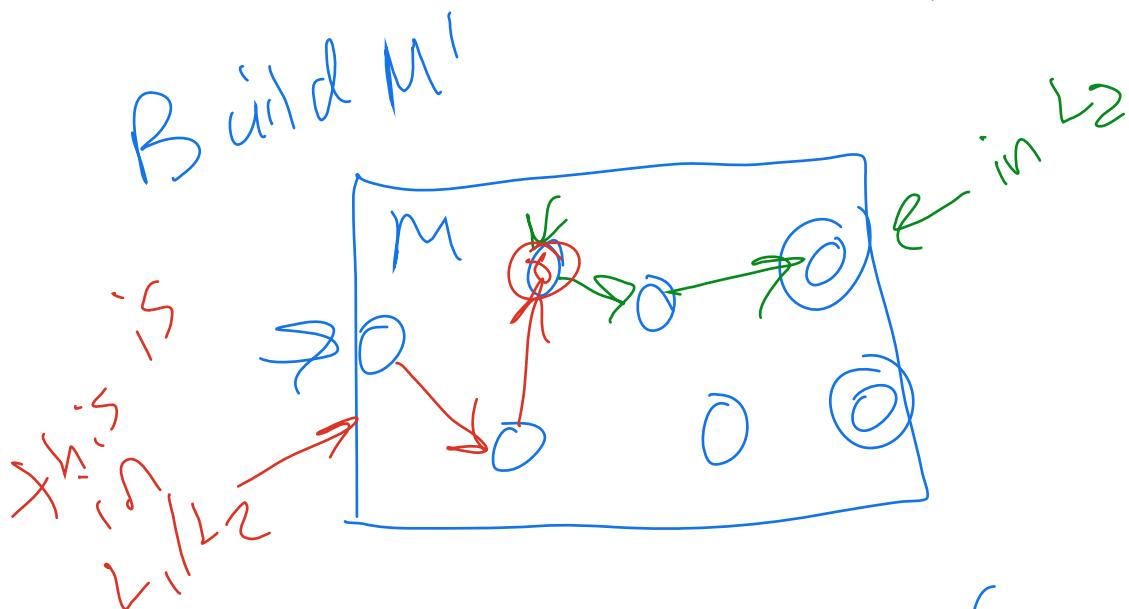
Proof (sketch)

\exists DFA $M = (Q, \Sigma, \delta, q_0, F)$ s.t. $L_1 = L(M)$.

Construct DFA $M' = (Q, \Sigma, \delta, q_0, F')$ for $L_1 \cap L_2$

For each state i do

Make i the start state (representing L_i')



if $l_1 \cap l_2 \neq \emptyset$ then
put g_i in F' in M'

QED.

Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$h: \Sigma \rightarrow \Gamma^*$$

Example:

$$\Sigma = \{a, b, c\}, \Gamma = \{0, 1\}$$

$$h(a) = 11$$

$$h(b) = 00$$

$$h(c) = 0$$

$$h(bc) = 000$$

$$h(ab^*) = \cup (00)^*$$

Questions about regular languages :

L is a regular language.

- Given $L, \Sigma, w \in \Sigma^*$, is $w \in L$?

Construct a DFA for L ,
test w to see if accepted

- Is L empty?

Construct a DFA
If there is a path from initial state
to a final state \Rightarrow then not empty
use DFS or BFS

- Is L infinite?

Construct a DFA
if there is a cycle \Rightarrow then infinite
language

- Does $L_1 = L_2$?

Construct $L_3 = (L_1 \cap \bar{L}_2) \cup (L_2 \cap \bar{L}_1)$
if $L_3 = \emptyset$ then $L_1 = L_2$

Identifying Nonregular Languages

If a language L is finite, is L regular?

Yes

If L is infinite, is L regular?

maybe, maybe not.

- $L_1 = \{a^n b^m \mid n > 0, m > 0\} = a a^* b b^*$ regular
- $L_2 = \{a^n b^n \mid n > 0\}$ NOT regular

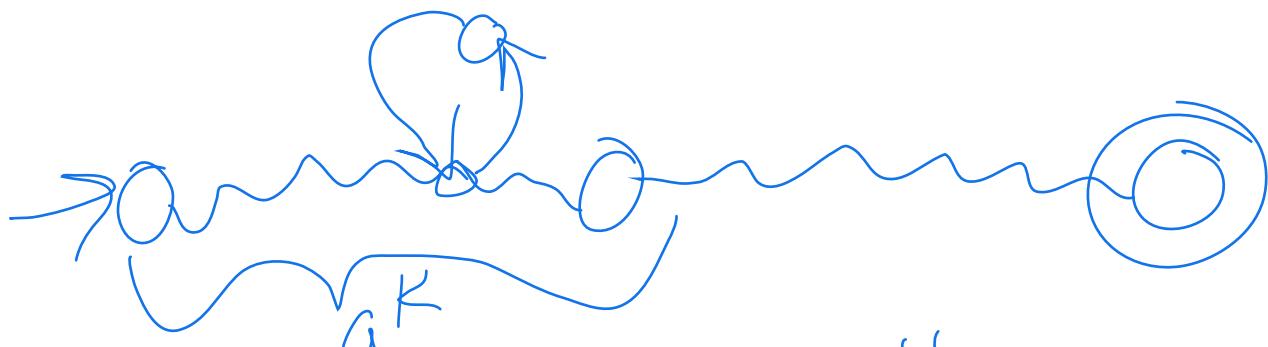
Prove that $L_2 = \{a^n b^n \mid n > 0\}$ is ?

• Proof: Suppose L_2 is regular.

$\Rightarrow \exists$ DFA M that recognizes L_2

M finite no. of states, k states

Consider a long string $a^k b^k \in L_2$

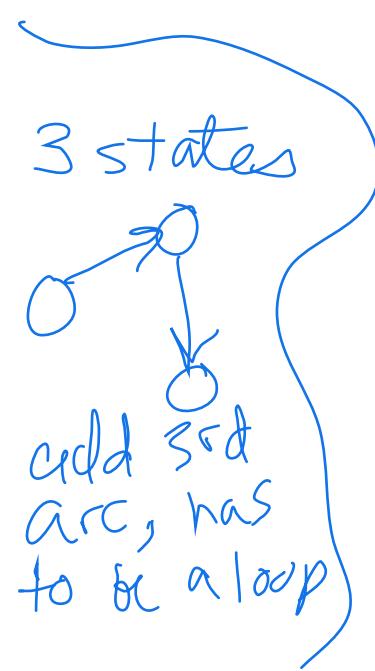


\Rightarrow has to be a loop with one or more a 's

\Rightarrow we can generate a string with more than k a 's!

for $a^k b^k$
we get $a^{k+j} b^k \notin L_2$
Contradiction.

$\Rightarrow L_2$ is not regular



no. of states in a DFA

Pumping Lemma: Let L be an infinite regular language. \exists a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

long string
m is same as x
string of all m states in DFA

$|xy| \leq m$
 $|y| \geq 1$ ← part we pump has to be something there

$xy^i z \in L$ for all $i \geq 0$

$w = aaaa...abbb...b$

x y z

To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.

Assume L is regular.

\Rightarrow L satisfies the pumping lemma.

Choose a long string w in L,

$|w| \geq m$.

Show that there is NO division of w into xyz (must consider all possible divisions) such that $|xy| \leq m$, $|y| \geq 1$ and $xy^i z \in L \forall i \geq 0$.

The pumping lemma does not hold.
Contradiction!

\Rightarrow L is not regular. QED.

Example $L = \{a^n cb^n \mid n > 0\}$

L is not regular.

• Proof:

Assume L is regular.

\Rightarrow the pumping lemma holds.

Choose $w = a^m c b^m \in L$

general way to show all partitions

$$x = a^k \quad y = a^j \quad z = a^{m-k-j} c b^m$$

$xy^i z \in L \quad \forall i$

find an i that doesn't work

$i=0 \quad xy^0 z = a^{m-j} c b^m \notin L$

contradiction! ✓

$\Rightarrow L$ is not regular

Note that $i=2$ also works to find a contradiction

You only have ¹⁶ to find one i that it doesn't work

make sure
string has
m in
m from
pumping lemma

Example $L = \{a^n b^{n+s} c^s \mid n, s > 0\}$

L is not regular.

• Proof:

Assume L is regular.

\Rightarrow the pumping lemma holds.

Choose $w = a^m b^{2m} c^m$

So the partition is:

general
for all
partitions $X = a^k$ $Y = a^j$ $Z = a^{m-k-j} b^{2m} c^m$

should be true $XY^i Z \in L \quad \forall i$

$i=2$ $XY^2 = a^{m+j} b^{2m} c^m \notin L$

Reason \Rightarrow no of a's $>$ no of c's
OR no of b's \neq no of a's + no of c's

Contradiction!

$\Rightarrow L$ is not regular!

also work
OR $a^m b^{m+1} c^3$
 $a^m b^{m+3} c^3$
 $a^m b^{m+1} c^3$
not so good
proof messier

Example $\Sigma = \{a, b\}$,

$L = \{w \in \Sigma^* \mid n_a(w) > n_b(w)\}$

L is not regular.

• Proof:

Assume L is regular.

\Rightarrow the pumping lemma holds.

Choose $w = b^m a^{m+1} \in L$

So the partition is:

$$x = b^k \quad y = \underbrace{b^j}_{j > 0} \quad z = b^{m-k-j} a^{m+1}$$

$\forall i \quad xy^i z \in L$

$$i=2 \quad xy^2 z = b^{m+j} a^{m+1} \notin L$$

no of b's $>$ no of a's

Contradiction

$\Rightarrow L$ is not regular

Note $i=0$ does not give contradiction

STOPPED HERE

Example $L = \{a^3b^n c^{n-3} \mid n > 3\}$

(shown in detail on handout)

L is not regular.

Assume L is regular

$$w = a^3 b^m c^{m-3}$$

$$w = xyz$$

aaabb...bc c...c

w
x y z
x x

Case 1 $x = a^k$ $y = a^j$ $z = a^{3-k} b^m c^{m-3}$
 $i = 2 \Rightarrow$ more than 3 a's

Case 2 $x = a^3 b^k$ $y = b^j$ $z = b^{m-j} c^{m-3}$

Etc lots of cases
find an i for each one!

To Use Closure Properties to prove L is not regular:

- Proof Outline:

Assume L is regular.

Apply closure properties to L and other regular languages, constructing L' that you know is not regular.

closure properties $\Rightarrow L'$ is regular.

Contradiction!

L is not regular. QED.

Example $L = \{a^3b^n c^{n-3} \mid n > 3\}$

L is not regular.

• Proof: (proof by contradiction)

Assume L is regular.

Define a homomorphism $h : \Sigma \rightarrow \Sigma^*$

$$h(a) = a \quad h(b) = a \quad h(c) = b$$

$$h(L) = \{a^3 a^n b^{n-3} \mid n > 3\}$$
$$= \{a^{n+3} b^{n-3} \mid n > 3\}$$

$h(L)$ is regular

$$L' = h(L) \{b^6\} = \{a^{n+3} b^{n+3} \mid n > 3\}$$

L' is regular

$$L'' = \{ab, a^2b^2, \dots, a^6b^6\} \text{ reg}$$

$$L' \cup L'' = \{a^n b^n \mid n \geq 0\} \text{ is reg}$$

Contradiction \Rightarrow not regular

$\Rightarrow L$ is not regular.

Example $L = \{a^n b^m a^m \mid m \geq 0, n \geq 0\}$

L is not regular.

• Proof: (proof by contradiction)

Assume L is regular.

$$L_1 = \{bb^*aa^*\}$$

$$L_2 = L \cap L_1 = \{b^m a^m \mid m > 0\}$$

$$h(a) = b \quad h(b) = a$$

$$h(L_2) = \{a^n b^n \mid n > 0\}$$
 should
be regular
contradiction!

$\Rightarrow L$ is not regular

Example: $L_1 = \{a^n b^n a^n \mid n > 0\}$

L_1 is not regular.

$L_2 = \{a^*\}$ is reg

$L_3 = L_1 \setminus L_2 = \{a^n b^n a^n \mid 0 \leq n \leq n\}$

L_3 should be regular

$L_4 = L_3 \cap \{a^* b^*\} = \{a^n b^n \mid n > 0\}$

should be reg.

Contradiction

$\Rightarrow L_1$ is not regular