Compsci 334 - Formal Languages and Automata with Applications
Dr. Susan Rodger
Section: Context-Free Languages (Ch. 5) (handout)

Context-Free Languages (Read Ch. 5 in Linz/Rodger Book)

Regular languages:

e keywords in a programming language
e names of identifiers
e integers

e all misc symbols: = ;

Not Regular languages:

e {a"cb™n > 0}
e expressions - ((a+b) —¢)

e block structures ({} in Java/C++ and begin ... end in pascal)

Definition: A grammar G=(V,T,S,P) is context-free if all productions are of the form

A —x

Where A€V and xe(VUT)*.
Definition: L is a context-free language (CFL) iff 3 context-free grammar (CFG) G s.t. L=L(G).

Example: G=({S},{a,b},S,P)

S — aSb | ab

Derivation of aaabbb:

S = aSb = aaSbb = aaabbb

Example: G=({S},{a,b},S,P)

S—aSa|bSb|a|b]|A

Derivation of ababa:

S = aSa = abSba = ababa

% = {a,b}, L(G) =

Example: G=({S,A,B},{a,b,c},S,P)

S — AcB
A —alAa |\
B — Bbb | A

L(G) =

Derivations of aacbb:

1. S = AcB = aAacB = aacB = aacBbb = aacbb

2. S = AcB = AcBbb = Acbb = aAacbb = aacbb

Note: Next variable to be replaced is underlined.

Definition: Leftmost derivation - in each step of a derivation, replace the leftmost variable. (see
derivation 1 above).

Definition: Rightmost derivation - in each step of a derivation, replace the rightmost variable. (see
derivation 2 above).

Derivation Trees (also known as “parse trees”)

A derivation tree represents a derivation but does not show the order productions were applied.

A derivation tree for G=(V,T,S,P):

e root is labeled S
o leaves labeled x, where xe TU{\}
e nonleaf vertices labeled A, AeV

e For rule A—ajaqzas ... ay,, where A€V, a; €(TUVU{)}),

Example: G=({S,A,B},{a,b,c},S,P)

S — AcB
A — alAa| A
B — Bbb | A

Definitions Partial derivation tree - subtree of derivation tree.

If partial derivation tree has root S then it represents a sentential form.
Leaves from left to right in a derivation tree form the yield of the tree.
Yield (w) of derivation tree is such that weL(G).

The yield for the example above is

Example of partial derivation tree that has root S:

The yield of this example is which is a sentential form.

Example of partial derivation tree that does not have root S:

Membership Given CFG G and string we ¥*, is weL(G)?

If we can find a derivation of w, then we would know that w is in L(G).

Motivation
G is grammar for Java
w is Java program.
Is w syntactically correct?
Example

G=({S}, {a,b}, S, P), P=
S SS|aSa|b|A

L1=L(G) =

Is abbab € L(G)?

Exhaustive Search Algorithm

For all i=1,2,3,. ..
Examine all sentential forms yielded by i substitutions

Example: Is abbab € L(G)?

Theorem If CFG G does not contain rules of the form

A— X
A—B

where A,BEV, then we can determine if we L(G) or if w¢Z L(G).

e Proof: Consider

1. length of sentential forms

2. number of terminal symbols in a sentential form

Example: Let Ly = Ly — {\}. L2=L(G) where G is:

S—SS|aalaSal|b

Show baaba ¢ L(G).

i=1 1. S=SS

.S = aSa
.S = aa
.S=b

=W N

i=2 1. S =SS = SSS

. S =SS = aSaS
. S =SS = aaS
.S =SS =DbS

. S = aSa = aSSa
. S = aSa = aaSaa
. S = aSa = aaaa

. S = aSa = aba

0 O Ui Wi

Definition Simple grammar (or s-grammar) has all productions of the form:

A — ax

where A€V, a€T, and x€V* AND any pair (A,a) can occur in at most one rule.

Ambiguity
Definition: A CFG G is ambiguous if 3 some we L(G) which has two distinct derivation trees.
Example Expression grammar

G={E]I}, {a,b,+,%,(,)}, E, P), P=

E—E+E |E«E | (E) |1
I—-alb
Derivation of a+bxa is:
E = E+E = I+E = a+E = a+ExE = a+IxE = a+bxE = a+bxl = a+bxa

Corresponding derivation tree is:

Another derivation of a-+bxa is:
E = E«E = E4+E«E = [+ExE = a+E«E = a+IxE = a+b*E = a+bxl = a+bx*a

Corresponding derivation tree is:

Rewrite the grammar as an unambiguous grammar. (with meaning that multiplication has higher
precedence than addition)

E—-E+T|T
T — T«F | F
F—1]|(E)
I—-al|b

There is only one derivation tree for a+b=a:

Definition If L is CFL and G is an unambiguous CFG s.t. L=L(G), then L is unambiguous.

Backus-Naur Form of a grammar:

e Nonterminals are enclosed in brackets <>

»

e For “—” use instead “::=

Sample C++ Program:

main ()
{
int a; int b; int sum;
a = 40; b = 6; sum = a + b;

cout << "sum is "<< sum << endl;

“Attempt” to write a CFG for C++ in BNF (Note: <program> is start symbol of grammar.)

<program> ::= main () <block>

<block> = { <stmt-list> }

<stmt-list> = <stmt> | <stmt><stmt-list> | <decl> | <decl><stmt-list>
<decl> = int <id> ; | double <id> ;

<stmt> = <asgn-stmt> | <cout-stmt>

<asgn-stmt> = <id> = <expr> ;

<expr> = <expr> + <expr> | <expr> % <expr> | (<expr>) | <id>
<cout-stmt> ::= cout <out-list> ;

etc., Must expand all nonterminals!
So a derivation of the program test would look like:

<block>

{ <stmt-list> }

{ <decl> <stmt-list> }
main () { int <id>; <stmt-list> }
main () { int a ; <stmt-list> }
complete C++ program

<program>=- main
main
main

A~ NN
— — — —

R R R

More on CFG for C++
We can write a CFG G s.t. L(G)={syntactically correct C++ programs}.
But note that {semantically correct C++ programs} C L(G).

Can’t recognize redeclared variables:

int x;
double x;

Can’t recognize if formal parameters match actual parameters in number and types:

declar: int Sum(int a, int b, int c) ...
call: newsum = Sum(x,y);

