
Compsci 334 - Formal Languages and Automata with Applications
Dr. Susan Rodger

Section: Context-Free Languages (Ch. 5) (handout)

Context-Free Languages (Read Ch. 5 in Linz/Rodger Book)

Regular languages:

• keywords in a programming language

• names of identifiers

• integers

• all misc symbols: = ;

Not Regular languages:

• {ancbn|n > 0}

• expressions - ((a+ b)− c)

• block structures ({} in Java/C++ and begin ... end in pascal)

Definition: A grammar G=(V,T,S,P) is context-free if all productions are of the form

A → x

Where A∈V and x∈(V∪T)∗.

Definition: L is a context-free language (CFL) iff ∃ context-free grammar (CFG) G s.t. L=L(G).

Example: G=({S},{a,b},S,P)

S → aSb | ab

Derivation of aaabbb:

S ⇒ aSb ⇒ aaSbb ⇒ aaabbb

L(G) =

1

Example: G=({S},{a,b},S,P)

S → aSa | bSb | a | b | λ

Derivation of ababa:

S ⇒ aSa ⇒ abSba ⇒ ababa

Σ = {a, b}, L(G) =

Example: G=({S,A,B},{a,b,c},S,P)

S → AcB
A → aAa | λ
B → Bbb | λ

L(G) =

Derivations of aacbb:

1. S ⇒ AcB ⇒ aAacB ⇒ aacB ⇒ aacBbb ⇒ aacbb

2. S ⇒ AcB ⇒ AcBbb ⇒ Acbb ⇒ aAacbb ⇒ aacbb

Note: Next variable to be replaced is underlined.

Definition: Leftmost derivation - in each step of a derivation, replace the leftmost variable. (see
derivation 1 above).

Definition: Rightmost derivation - in each step of a derivation, replace the rightmost variable. (see
derivation 2 above).

Derivation Trees (also known as “parse trees”)

A derivation tree represents a derivation but does not show the order productions were applied.

A derivation tree for G=(V,T,S,P):

• root is labeled S

• leaves labeled x, where x∈T∪{λ}

• nonleaf vertices labeled A, A∈V

• For rule A→a1a2a3 . . . an, where A∈V, ai ∈(T∪V∪{λ}),

2

a1 a a3 a

A

2 n

Example: G=({S,A,B},{a,b,c},S,P)

S → AcB
A → aAa | λ
B → Bbb | λ

Definitions Partial derivation tree - subtree of derivation tree.

If partial derivation tree has root S then it represents a sentential form.

Leaves from left to right in a derivation tree form the yield of the tree.

Yield (w) of derivation tree is such that w∈L(G).

The yield for the example above is

Example of partial derivation tree that has root S:

The yield of this example is which is a sentential form.

Example of partial derivation tree that does not have root S:

Membership Given CFG G and string w∈ Σ∗, is w∈L(G)?

If we can find a derivation of w, then we would know that w is in L(G).

Motivation

G is grammar for Java
w is Java program.

Is w syntactically correct?

Example

G=({S}, {a,b}, S, P), P=

S → SS | aSa | b | λ

L1=L(G) =

Is abbab ∈ L(G)?

3

Exhaustive Search Algorithm

For all i=1,2,3,. . .
Examine all sentential forms yielded by i substitutions

Example: Is abbab ∈ L(G)?

Theorem If CFG G does not contain rules of the form

A → λ
A → B

where A,B∈V, then we can determine if w∈ L(G) or if w̸∈ L(G).

• Proof: Consider

1. length of sentential forms

2. number of terminal symbols in a sentential form

Example: Let L2 = L1 − {λ}. L2=L(G) where G is:

S → SS | aa | aSa | b

Show baaba ̸∈ L(G).

i=1 1. S ⇒ SS
2. S ⇒ aSa
3. S ⇒ aa
4. S ⇒ b

i=2 1. S ⇒ SS ⇒ SSS
2. S ⇒ SS ⇒ aSaS
3. S ⇒ SS ⇒ aaS
4. S ⇒ SS ⇒ bS
5. S ⇒ aSa ⇒ aSSa
6. S ⇒ aSa ⇒ aaSaa
7. S ⇒ aSa ⇒ aaaa
8. S ⇒ aSa ⇒ aba

Definition Simple grammar (or s-grammar) has all productions of the form:

A → ax

where A∈V, a∈T, and x∈V∗ AND any pair (A,a) can occur in at most one rule.

4

Ambiguity

Definition: A CFG G is ambiguous if ∃ some w∈ L(G) which has two distinct derivation trees.

Example Expression grammar

G=({E,I}, {a,b,+,∗,(,)}, E, P), P=

E → E+E | E∗E | (E) | I
I → a | b

Derivation of a+b∗a is:

E ⇒ E+E ⇒ I+E ⇒ a+E ⇒ a+E∗E ⇒ a+I∗E ⇒ a+b∗E ⇒ a+b∗I ⇒ a+b∗a

Corresponding derivation tree is:

Another derivation of a+b∗a is:

E ⇒ E∗E ⇒ E+E∗E ⇒ I+E∗E ⇒ a+E∗E ⇒ a+I∗E ⇒ a+b∗E ⇒ a+b∗I ⇒ a+b∗a

Corresponding derivation tree is:

Rewrite the grammar as an unambiguous grammar. (with meaning that multiplication has higher
precedence than addition)

E → E+T | T
T → T∗F | F
F → I | (E)
I → a | b

There is only one derivation tree for a+b∗a:

Definition If L is CFL and G is an unambiguous CFG s.t. L=L(G), then L is unambiguous.

5

Backus-Naur Form of a grammar:

• Nonterminals are enclosed in brackets <>

• For “→” use instead “::=”

Sample C++ Program:

main ()

{

int a; int b; int sum;

a = 40; b = 6; sum = a + b;

cout << "sum is "<< sum << endl;

}

“Attempt” to write a CFG for C++ in BNF (Note: <program> is start symbol of grammar.)

<program> ::= main () <block>
<block> ::= { <stmt-list> }
<stmt-list> ::= <stmt> | <stmt><stmt-list> | <decl> | <decl><stmt-list>
<decl> ::= int <id> ; | double <id> ;
<stmt> ::= <asgn-stmt> | <cout-stmt>
<asgn-stmt> ::= <id> = <expr> ;
<expr> ::= <expr> + <expr> | <expr> ∗ <expr> | (<expr>) | <id>
<cout-stmt> ::= cout <out-list> ;

etc., Must expand all nonterminals!

So a derivation of the program test would look like:

<program>⇒ main () <block>
⇒ main () { <stmt-list> }
⇒ main () { <decl> <stmt-list> }
⇒ main () { int <id>; <stmt-list> }
⇒ main () { int a ; <stmt-list> }
∗⇒ complete C++ program

More on CFG for C++

We can write a CFG G s.t. L(G)={syntactically correct C++ programs}.

But note that {semantically correct C++ programs} ⊂ L(G).

Can’t recognize redeclared variables:

int x;
double x;

Can’t recognize if formal parameters match actual parameters in number and types:

declar: int Sum(int a, int b, int c) ...
call: newsum = Sum(x,y);

6

