

Regular Expressions

Method to represent strings in a language

- + union (or)
- o concatenation (AND) (can omit)
- * star-closure (repeat 0 or more times)

Example:

$$(a + b)^* \circ a \circ (a + b)^*$$

Example:

$$(aa)^*$$

Definition Given Σ ,

1. $\emptyset, \lambda, a \in \Sigma$ are R.E.
2. If r and s are R.E. then
 - $r+s$ is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r^* is R.E.
3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: $L(r)$ = language denoted by R.E. r.

1. $\emptyset, \{\lambda\}, \{a\}$ are L denoted by a R.E.
2. if r and s are R.E. then
 - (a) $L(r+s) = L(r) \cup L(s)$
 - (b) $L(rs) = L(r) \circ L(s)$
 - (c) $L((r)) = L(r)$
 - (d) $L((r)^*) = (L(r)^*)$

Precedence Rules

- * highest
- o
- +

Example:

$$ab^* + c =$$

Examples:

1. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}$.
2. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w \text{ has no more than 3 } a\text{'s and must end in } ab\}$.
3. Regular expression for all integers (including negative)

Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \exists NFA M s.t. $L(M) = L(r)$.

- Proof:

\emptyset

$\{\lambda\}$

$\{a\}$

Suppose r and s are R.E.

1. $r+s$
2. ros
3. r^*

Example

$ab^* + c$

Theorem Let L be regular. Then \exists R.E. r s.t. $L=L(r)$.

Proof Idea: remove states successively, generating equivalent generalized transition graphs (GTG) until only two states are left (one initial state and one final state).

- Proof:

L is regular

$\Rightarrow \exists$

1. Assume M has one final state and $q_0 \notin F$
2. Convert to a generalized transition graph (GTG), all possible edges are present.

If no edge, label with

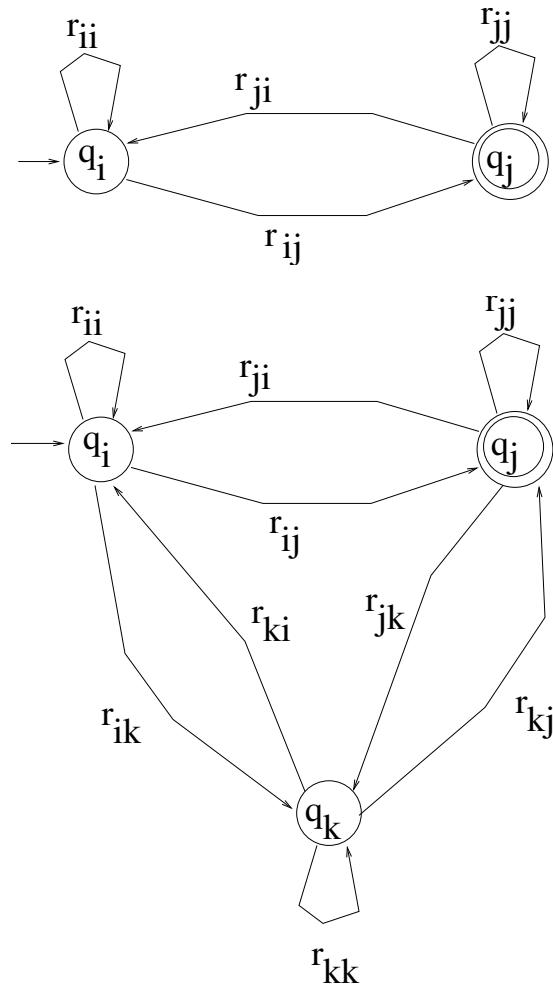
Let r_{ij} stand for label of the edge from q_i to q_j

3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

$$r = (r_{ii}^* r_{ij} r_{jj}^* r_{ji})^* r_{ii}^* r_{ij} r_{jj}^*$$

4. If the GTG has three states then it must have the following form:



In this case, make the following replacements:

REPLACE	WITH
r_{ii}	$r_{ii} + r_{ik}r_{kk}^*r_{ki}$
r_{jj}	$r_{jj} + r_{jk}r_{kk}^*r_{kj}$
r_{ij}	$r_{ij} + r_{ik}r_{kk}^*r_{kj}$
r_{ji}	$r_{ji} + r_{jk}r_{kk}^*r_{ki}$

After these replacements, remove state q_k and its edges.

5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule

r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$

with different values of o and p.

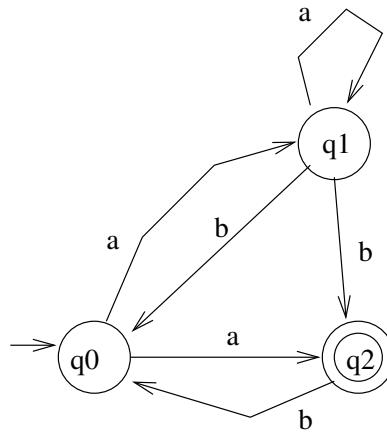
When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.

6. In each step, simplify the regular expressions r and s with:

$$\begin{aligned}
r + r &= r \\
s + r^*s &= \\
r + \emptyset &= \\
r\emptyset &= \\
\emptyset^* &= \\
r\lambda &= \\
(\lambda + r)^* &= \\
(\lambda + r)r^* &=
\end{aligned}$$

and similar rules.

Example:



Section 3.3

Grammar $G = (V, T, S, P)$

V variables (nonterminals)
 T terminals
 S start symbol
 P productions

Right-linear grammar:

all productions of form
 $A \rightarrow xB$
 $A \rightarrow x$
 where $A, B \in V, x \in T^*$

Left-linear grammar:

all productions of form
 $A \rightarrow Bx$
 $A \rightarrow x$
 where $A, B \in V, x \in T^*$

Definition:

A regular grammar is a right-linear or left-linear grammar.

Example 1:

$G = (\{S\}, \{a, b\}, S, P)$, $P =$
 $S \rightarrow abS$
 $S \rightarrow \lambda$
 $S \rightarrow Sab$

Example 2:

$G = (\{S, B\}, \{a, b\}, S, P)$, $P =$
 $S \rightarrow aB \mid bS \mid \lambda$
 $B \rightarrow aS \mid bB$

Theorem: L is a regular language iff \exists regular grammar G s.t. $L=L(G)$.

Outline of proof:

- (\Leftarrow) Given a regular grammar G
 - Construct NFA M
 - Show $L(G) = L(M)$
- (\Rightarrow) Given a regular language
 - \exists DFA M s.t. $L=L(M)$
 - Construct reg. grammar G
 - Show $L(G) = L(M)$

Proof of Theorem:

- (\Leftarrow) Given a regular grammar G
 $G = (V, T, S, P)$
 $V = \{V_0, V_1, \dots, V_y\}$
 $T = \{v_o, v_1, \dots, v_z\}$
 $S = V_0$
Assume G is right-linear
(see book for left-linear case).
Construct NFA M s.t. $L(G) = L(M)$
If $w \in L(G)$, $w = v_1 v_2 \dots v_k$

$M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\})$
 V_0 is the start (initial) state
For each production, $V_i \rightarrow aV_j$,

For each production, $V_i \rightarrow a$,

Show $L(G) = L(M)$

Thus, given R.G. G,
 $L(G)$ is regular

(\Rightarrow) Given a regular language L

\exists DFA M s.t. $L=L(M)$

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{q_0, q_1, \dots, q_n\}$$

$$\Sigma = \{a_1, a_2, \dots, a_m\}$$

Construct R.G. G s.t. $L(G) = L(M)$

$$G = (Q, \Sigma, q_0, P)$$

if $\delta(q_i, a_j) = q_k$ then

if $q_k \in F$ then

Show $w \in L(M) \iff w \in L(G)$

Thus, $L(G) = L(M)$.

QED.

Example

$$G = (\{S, B\}, \{a, b\}, S, P), P =$$

$$S \rightarrow aB \mid bS \mid \lambda$$

$$B \rightarrow aS \mid bB$$

Example:

