Compsci 334 - Formal Languages and Automata with Applications
Dr. Susan Rodger
Section: Regular Languages (Ch. 3) (handout)

Regular Expressions

Method to represent strings in a language

+ union (or)
o  concatenation (AND) (can omit)
x  star-closure (repeat 0 or more times)

Example:
(a+b)*oao(a+b)*
Example:

(aa)*

Definition Given %,

1. 0, A\, a € ¥ are R.E.
2. If r and s are R.E. then

r+s is R.E.
rs is R.E.
(r) is a R.E.
e r*is R.E.

3. ris a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: L(r) = language denoted by R.E. r.

1. 0, {A\}, {a} are L denoted by a R.E.
2. if r and s are R.E. then

)
(b) L(rs) = L(r) o L(s)
(¢) L((x)) = L(r)
(d) L)) = (L(x)")

Precedence Rules

*  highest

o

+
Example:

ab* +c =



Examples:

1. ¥ ={a,b}, {w € ¥* | w has an odd number of a’s followed by an even number of b’s}.

2. ¥ ={a,b}, {w € ¥* | w has no more than 3 a’s and must end in ab}.

3. Regular expression for all integers (including negative)

Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then 3 NFA M s.t. L(M) = L(r).

e Proof:

0
{A}
{a}

Suppose r and s are R.E.

1. r+s
2. ros

3. r*

Example
ab* + ¢
Theorem Let L be regular. Then 3 R.E. r s.t. L=L(r).

Proof Idea: remove states sucessively, generating equivalent generalized transition graphs (GTG) until only
two states are left (one initial state and one final state).

e Proof:
L is regular
=4
1. Assume M has one final state and gy & F
2. Convert to a generalized transition graph (GTG), all possible edges are present.
If no edge, label with
Let r;; stand for label of the edge from ¢; to g;
3. If the GTG has only two states, then it has the following form:
In this case the regular expression is:

E3
iiTi57 55

4. If the GTG has three states then it must have the following form:

= (g



In this case, make the following replacements:

REPLACE WITH

T Tii + Tik g ki
Tjj T TR Rk R
Tij Tig T ikT Tk
Tji Tji + TjkT g ki

After these replacements, remove state g, and its edges.

5. If the GTG has four or more states, pick a state g to be removed (not initial or final state).
For all o # k,p # k use the rule

Top Teplaced with rop + 7ok} Tkp

with different values of o and p.

When done, remove ¢ and all its edges. Continue eliminating states until only two states are left.
Finish with step 3.

6. In each step, simplify the regular expressions r and s with:



and similar rules.

Example:

Section 3.3
Grammar G=(V,T,S,P)

V  variables (nonterminals)
T  terminals

S start symbol

P productions

Right-linear grammar:

all productions of form
A — xB
A—>x

where AB € V, x € T*

Left-linear grammar:

all productions of form
A — Bx
A—x

where AB eV, x e T*

Definition:

a

abb

DS C
b

A regular grammar is a right-linear or left-linear grammar.



Example 1:

G=({S},{a,b},S,P), P=
S — abS
S— A
S — Sab

Example 2:

G=({S,B},{a,b} S,P), P=
S — aB|bS|A
B — aS | bB

Theorem: L is a regular language iff 3 regular grammar G s.t. L=L(G).

Outline of proof:

(«<=) Given a regular grammar G
Construct NFA M
Show L(G)=L(M)

(=) Given a regular language
3 DFA M s.t. L=L(M)
Construct reg. grammar G
Show L(G) = L(M)

Proof of Theorem:

<) Given a regular grammar G
G=(V,T,S,P)

V={W,V1,...,V}

T={vo,v1,...,0;}

S=Vo
Assume G is right-linear

(see book for left-linear case).
Construct NFA M s.t. L(G)=L(M)
If weL(G), w=v1vs ... vk

M=(VU{V};},T,0,Vo.{V}})
Vo is the start (initial) state
For each production, V; — aVj,



For each production, V; — a,

Show L(G)=L(M)
Thus, given R.G. G,
L(G) is regular

(=) Given a regular language L

3 DFA M s.t. L=L(M)
M:(Q7Z757q07 F)
Q:{QO7C]1a R qn}
Y ={a,a2,...,an}

Construct R.G. G s.t. L(G) = L(M)
G:(QazvqﬂvP)
if 0(gi, aj)=qx then

if gx €F then
Show w €L(M) <= w € L(G)

Thus, L(G)=L(M).
QED.

Example

G=({S,B},{a,b},S,P), P=
S aB | bS | A
B — aS | bB

Example:




