
COMPSCI 230 — Spring 2017
Homework Preparation and Submission Instructions

Carlo Tomasi

Short Version

1. Download the assignment from the homework pagea and unzip it.

2. The only files you need to edit are solution.tex and, if code is required, code.py.

3. The answer to each problem must fit on a single page.

4. Put your full name in place of Mandatory Author in the command

\authors{Mandatory Author}[][]

at the top of solution.tex, and put the full names of any partners in the brackets.

5. Write any required text inside the solution environment for each problem in LATEX.

6. Replace each instance of the comment

Your code here

in code.py with your code.

7. Check the code outputs for correctness. These are either written automatically to output.txt or
your code writes them to a file whose name is specified in the assignment.

8. Compile solution.tex to produce solution.pdf. Your code in code.py is automatically
inserted where appropriate during compilation, and so are the outputs.

9. Double-check and proofread your solution carefully.

10. Each group submits one copy of solution.pdf to Gradescope and one copy of code.py to Sakai
(if the assignment has code) before 10:05am on the due date. The Gradescope class code is M3WGDM.
Enter the names of your group peers on the Gradescope submission form! Submit files to Sakai
as attachments, and do not use the Sakai dropbox. No late assignments are accepted.

aIn this document and in the assignments, cyan-colored text like this denotes a clickable link to a web page.

The instructions above are terse, and are intended for reference when you work on future assignments.
The rest of this document is a longer version that explains what is going on in some detail.

1

http://www.cs.duke.edu/courses/spring17/compsci230/homework.html
https://gradescope.com/courses/5739
https://sakai.duke.edu

Introduction

This document explains why we want you to care about what your assignment solutions for COMPSCI 230
look like, and how to achieve proper homework formatting. Follow these instructions scrupulously for
full credit.

The last section of this document, in particular, takes you through the workflow for preparing your
solution to assignment 1. Similar steps will hold for subsequent assignments, so you will likely refer back
to this document (or at least the short version on the first page) in the future.

Why Format Matters

There are several reasons why we require carefully formatted homework assignments:

• Mathematics is all about clarity, and you cannot write clear math sloppily. Sloppy math is no math.

• If you become a computer scientist, preparing documents for others to read will be a major part of
what you do. If your documents look professional, so do you.

• COMPSCI 230 is a large class, and grading assignments is much more efficient if they are formatted
well, so we do not need to read scribbles and we know where to look for answers. You receive faster
feedback as a result.

• We use Gradescope to grade assignments. This tool expects each answer to be in a very specific place
in a PDF file. The macros we wrote for you make it easy to meet these expectations.

• I wrote a combination of LATEX commands for a new LATEX class implemented in file homework.cls,
and Python code (in a file called homework.py) that make it straightforward to include code and
code output into your solution.

I know that these reasons are enough for you, but here is one more, just in case:

• Grade points will be deducted for every deviation from the required format.

2

https://gradescope.com/courses/5739

Who Hands in What, Where, and When

Homework Files. Every homework assignment shows up on the class homework page with a PDF file that
describes the assignment itself, plus a ZIP archive file that contains all the files necessary for the assignment.
The ZIP file in turn contains a directory1 whose name is a two-digit string that identifies the assignment,
starting with 01 for the first assignment.2

Do not change the names of any of the files in the ZIP archive. The only files you need to edit are
solution.tex and code.py. As you edit those files, make sure you do not disturb what is already
in them, and make sure you write in the appropriate places as explained below.

Partnering for an Assignment. You may work on an assignment alone, as part of a duo, or as part of a
trio. You may change groups from assignment to assignment, but once you start working on an assignment
you may not change partnership.3

Solution Submissions. Each group hands in one assignment solution that lists the names of all students
(up to three) who worked on it. Do not hand in multiple solutions for the same group. This would make our
work much harder.

All assignment solutions have some text, and some have Python 3 code. No code written in earlier
versions of Python will be accepted. Version 3.6 is recommended for consistency with the version we run.

Every solution submission comes with a PDF file that contains both your answer text and appropriate
listings of your code, if any, as explained later on. For assignments that involve code, a separate code.py
file should also be submitted for us to run and verify.

The name of your PDF submission is solution.pdf. The name of your Python submission, if any,
is code.py. Do not change the names of these files, a template for which is provided in the ZIP archive.

One person per team submits the PDF file for the team to Gradescope. The same person submits the
Python file, if required, to Sakai.

Submission Deadline. All assignments are due by beginning of class (10:05 am) on the due date. The
Sakai and Gradescope sites will close for submission at that time, so this is a hard deadline.

LATEX. Your PDF submission is to be prepared in LATEX, a document preparation language everyone in
computer science, mathematics, and several other disciplines uses to write books, papers, and more. If you
become a computer scientist, you will use LATEX at some point. You might as well learn how to use it now. In
exchange for 2-3 hours invested at the beginning of this semester, preparing your homework for submission
will become much easier and less error-prone than it would be without LATEX, as many of the necessary tasks
can be automated. You will save both time and grade penalties with this initial investment.

1Directories are also called “folders” on some operating systems.
2Two digits are used so that your directories show up in the proper order if you keep them all together.
3If you were to start an assignment with A and finish it with B, you would be transferring information between A and B, which

would be a violation of the rules of academic integrity. Joining one or two other students late is OK, because it involves no undue
transfer of information. Splitting from a group is not OK, because the two new groups share information from before they split.
You get the idea.

3

https://www.cs.duke.edu/courses/spring17/compsci230/homework.html
https://en.wikipedia.org/wiki/Portable_Document_Format
https://en.wikipedia.org/wiki/Zip_(file_format)
https://www.python.org/
https://gradescope.com/courses/5739
https://sakai.duke.edu
http://www.latex-project.org

How to Prepare a Homework Solution

This Section takes you through the workflow of handing in homework 1. Similar steps, with obvious varia-
tions, will hold for future assignments.

It is assumed that you have read enough about LATEX that you understand how to compile the .tex
file you write into a .pdf file. It is also assumed that you have installed both Python 3 (with the IDLE
development interface) and LATEX, and know how to use them.

If not, stop now, and study the LATEX intro and Python 3 intro. Install the software4 and follow any links
you need from those two documents to familiarize yourself with the basics. Then read on.

1. Download the assignment text assignment.pdf and the ZIP file HW01.zip from the homework
page. If you use ShareLaTeX, you can just upload the entire ZIP file to that site and continue with
step 5. If you have installed LATEX on your computer, on the other hand, do steps 2-4 below.

2. Unzip the ZIP file. This will create a directory HW01 with all the files needed for the assignment.

3. Move the file assignment.pdf to directory HW01, so all you need is in one place.5

4. Move the directory HW01 to a place you will be able to find later: It is good practice to put all the
homework directories for this course in the same directory on your computer, so when you study for
exams you find everything easily. Also, some assignments may refer to older assignments, so it is
good to know where to find those on your computer.

5. Open assignment.pdf to see what you are asked to do for the assignment. An assignment is
divided into parts. A part is simply a way to group problems by topic. Often a part will have a
(possibly long) preamble explaining various aspects of the corresponding topic. Each part is in turn
divided into problems, and each problem requires generally one solution, which is expected to fit
on a single page in the document solution.pdf you submit.

6. Each problem (not part!) title has a tag name in parentheses. For instance, problem 1.1 has tag math.
For problems that involve no code, the tags are merely a convenient way to make the correspondence
between problems and your solutions easier to notice than the problem numbers (1.1, 1.2 and so forth).
For problems that involve code, on the other hand, tags are crucial for synchronizing LATEX and Python
files. More on this later on.

7. To start solving problem 1.1, open the provided file solution.tex. As you see, the structure
of this LATEX source file mirrors that of the assignment.6 Let us look at the initial elements of this
structure:

4If you prefer, you can use ShareLaTeX online, instead of downloading LATEX to your computer. The latter solution is more
efficient in the long term.

5The assignment PDF file is separate from the ZIP so it is viewable directly from the class homework page. It is not duplicated
in the ZIP file to avoid possibly inconsistent versions.

6In fact, a program generates solution.tex automatically from the assignment.

4

http://www.cs.duke.edu/courses/spring15/compsci230/notes/02%20Latex.html
http://www.cs.duke.edu/courses/spring17/compsci230/notes/python3.html
http://www.cs.duke.edu/courses/spring17/compsci230/homework.html
http://www.cs.duke.edu/courses/spring17/compsci230/homework.html
https://www.sharelatex.com
https://www.sharelatex.com

• The instruction

\documentclass{homework}

tells LATEX to read formatting and other instructions from the document class defined in the pro-
vided file homework.cls. This file remains more or less the same throughout the semester.
It may change a little over time, and this is why a fresh copy is given with each assignment.
Among other things, this file tells LATEX to find other files in the homework directory, including
macros.sty, which contains LATEX command definitions that make it easier to write the as-
signment. Those definitions could be placed directly in solution.tex, but putting them in a
separate file keeps things cleaner. Typically, hints will be given as to what commands are useful,
but you can also explore macros.sty yourself.

• The line

\homework{COMPSCI 230}{Spring 2017}{1}

defines course name, semester, and homework number, so LATEX knows how to build page head-
ers and footers.

• The command

\authors{Mandatory Author}[][]

is important for your submission. Replace the words Mandatory Author with your name.
If you work with one or two more people on this assignment, add their names in the square
brackets. Do not change brackets or braces. Curly braces denote mandatory arguments in LATEX,
while brackets denote optional ones.

• The entire document (the part to be typeset) is included in a document environment, which
starts with \begin{document} and ends with \end{document}.

• The command

\part{\latex}

merely provides a title for the first part. The macros.sty file, which LATEX knows about
through the homework class, contains a macro \latex so that it is easy to write “LATEX”
rather than just “latex.”

• The command

\problem{math}

tells LATEX that everything in the subsequent solution environment (between
\begin{solution} and \end{solution}) refers to the tag math. Since this problem
requires no Python coding, this tag is not too important here. It will be crucial in the second
problem. Let us now go back to step-by-step instructions.

8. Write text and LATEX commands inside the solution environment so that when you compile
solution.tex the page for Problem 1.1, the file solution.pdf looks as similar as you can
make it to the corresponding text in assignment.pdf. Compile your solution.tex file to
make sure, and iterate until you are satisfied.

LATEX Errors and Warnings. The first time you compile solution.tex, you may get some error
and warning messages. Error messages stop compilation, and you need to fix the problem before

5

recompiling. Please check that you have no unbalanced braces or dollar signs. Read the message that
comes with the error: It is often quite informative. One way to make debugging much easier is to
compile the LATEX source file often as you write in it: If an error occurs, it must be in the last few lines
you wrote since the previous compilation.

Warnings are more benign, and do not stop compilation. For instance, the following warning may
occur:

Package hyperref Warning: Rerun to get /PageLabels entry.

This tells you that LATEX collected some information about cross-references within the document, and
needs a second pass to use that information to link document parts appropriately. If you see similar
warnings, just recompile the file. This will fix the references, and the warning will go away.7

Another warning may be similar to the following:

Class homework Warning: Did not find file ./output.txt
in the current directory on input line 59.

This is because, for homework that requires code, LATEX (or rather the homework class) knows to
expect a file code.py, from which to read Python code, and a file output.txt, from which
to read the output that this code generates. These files are expected to be in the same directory
as solution.tex. The file code.py is already there because it is provided with the assign-
ment, but output.txt is not there yet, because you have not yet run any Python code that makes
output.txt and writes to it. The warning will go away only after output.txt shows up.

9. Part 2, with problem 2.1, is more interesting, because LATEX will insert Python code and output from
the code automatically into your LATEX source. The key to this is the slice tag for this problem. Open
code.py in IDLE and inspect it. The very first line imports various functions from homework.py
(provided). These include begin, end, which are called around a comment that tells you to enter
your code there, and beginOutput, endOutput, which are called around some code that tests the
code you write.

As you see, the argument to all four of these functions is the string 'slice', and this is how Python
and LATEX understand each other. If you look at the solution to Problem 2.1 in solution.pdf, you
will see a box with the text

Your code here

That text was generated by the first \insertCode command in solution.tex. The command
\problem{slice} (no quotes here) tells LATEX:

If you encounter an \insertCode command in the next solution environment, look
for file code.py in the current directory, extract any text between a line that contains
begin('slice') (and nothing else) and a line that contains end('slice'), and in-
sert that text verbatim in place of the \insertCode command.

7In rare cases, you may have to compile the file three times.

6

So if you replace the comment in code.py by your code, a listing of that code will show up in
solution.pdf the next time you compile solution.tex.

Take a minute to absorb what is going on here. It is important that you understand this.

10. Delete the comment in the Python file and replace it by your code. Once you are done, if your
code runs without errors, the output it produces will show up in output.txt, because its name
is contained in the variable outputFileName, and the test code in code.py writes to that file.
The 'a' argument to open tells Python to append the output to the file, so any output produced by
any previous code you may have run is still in output.txt. If you had used the 'w' argument
instead, old contents in output.txt would be lost. The call clearOutputFile() at the top of
code.py erases output.txt to start anew.

11. Once you are happy with your code, run code.py. If your code had errors, the test code fails. Since
it is in a try block, the error causes execution to skip to what’s after the except keyword. The
pass command does nothing, and execution of code.py continues after that. All the subsequent
test code fails as well, because you haven’t solved subsequent coding problems yet, so nothing useful
happens.

If your code runs without errors, on the other hand, the test outputs are written to output.txt. Cru-
cially, these outputs are again surrounded by begin('slice') and end('slice') lines. While
in code.py these lines are code (and also double as tag delimiters for LATEX), in output.txt they
are just tag delimiters.

The command \insertOutput in solution.tex is analogous to \insertCode, with the
only difference that \insertOutput looks for file output.txt instead of code.py to get its
text. As a result, LATEX automatically retrieves the output from output.txt and displays it appro-
priately in solution.pdf.

12. Problem 3.1 (tag: names) is a bit different, because you are asked to write a function switch that
writes to a file with a name given as argument, rather than to output.txt. So you cannot use
\insertOutput. Instead, solution.tex contains the following commands:

\insertFileIfExists{enumeration.txt}

This command looks for a file enumeration.txt. If it finds it, it places its contents verbatim in
place of the command itself. Otherwise, it issues a warning and continues compilation, without doing
anything.

13. Another difference arises in Problem 3.2 (tag: maze), for which the file solution.tex contains
the following commands:

\begin{center}
\inputFileIfExists{bigMaze}
\end{center}

The center environment centers its contents horizontally on the page. The command
\inputFileIfExists{bigMaze} looks for a LATEX file bigMaze.tex. If it finds it, it exe-
cutes its contents in lieu of the command itself. Otherwise, it issues a warning and continues compi-
lation, without doing anything.

7

The difference between \insertFileIfExists, used in Problem 3.1, and
\inputFileIfExists, used in Problem 3.2, is that the former can take any file and paste its
contents verbatim where the command appears, so what you see in solution.pdf looks exactly
what you would see if you looked at the file. In contrast, \inputFileIfExists assumes that the
given file is a .tex file (this is why you are not asked to specify the file extension), and executes
what is in it. As an example, suppose that file example.tex contains the following:

The square root of 2,
\[

\sqrt{2} \approx 1.414 \;,
\]
is an irrational number, so that $\sqrt{2} \notin \mathbb{Q}$.

Then, saying \insertIFileIfExists{example.tex} produces

The square root of 2,
\[

\sqrt{2} \approx 1.414 \;,
\]
is an irrational number, so that $\sqrt{2} \notin \mathbb{Q}$.

in solution.pdf, while saying \inputFileIfExists{example} yields

The square root of 2, √
2 ≈ 1.414 ,

is an irrational number, so that
√
2 /∈ Q.

14. For problems that require short code snippets and test outputs, code and outputs are typically requested
as part of a single problem. For tasks with longer answers, such as the maze problem, code and output
may be requested as part of separate problems (3.2 and 3.3 in the example) with different tags (maze
and path). Do not change these partitions, as LATEX, Python, and Gradescope all depend on them.

15. When you are done with the assignment, proofread it accurately. Then submit solution.pdf to
Gradescope and code.py to Sakai. One copy per group, but remember to enter the names of your
group peers on the submission form!

8

https://gradescope.com/courses/5739
https://sakai.duke.edu

