Date Topic Slides Readings Notes
01/10 Deep Neural Networks and Automatic Differentiation 1-autodiff.pdf Assignment 1 Release
01/15 Deep Learning Framework 1 2-tensorflow.pdf Link
01/17 Deep Learning Framework 2 3-pytorch.pdf Link
01/22 NO CLASS (Snow Day)
01/24 Deep Learning Compiler 1 4-tvm.pdf Link
01/29 Deep Learning Compiler 2 5-ansor.pdf Link Assignment 1 Due; Assignment 2 Release
01/31 Graph Optimization 6-taso.pdf Link
02/05 Deep Learning Inference 1 7-nexus.pdf Link Project Proposal Due
02/07 Deep Learning Inference 2 8-deepcompression.pdf Link
02/12 Parallel Training 1 9-pytorchddp.pdf Link Assignment 2 Due; Assignment 3 Release
02/14 Parallel Training 2 10-zero.pdf Link
02/19 NO CLASS (Snow Day)
02/21 Parallel Training 3 11-ptdp.pdf Link
02/26 Parallel Training 4 12-alpa.pdf Link Assignment 3 Due
02/28 Parallel Training 5 13-pytorch-fsdp.pdf Link
03/05 Sparse Mixture of Experts 14-gshard.pdf Link Project Checkpoint 1 Report Due
03/07 Efficient Attention Mechanisms 15-flashattention.pdf Link
03/12 NO CLASS (Spring Break)
03/14 NO CLASS (Spring Break)
03/19 Continuous Batching 16-orca.pdf Link
03/21 Memory Management 17-pagedattention.pdf Link
03/26 Chunked Prefill 18-sarathiserve.pdf Link
03/28 Disaggregating Prefill and Decoding 19-distserve.pdf Link Project Checkpoint 2 Report Due
04/02 Parameter-Efficient Fine-Tuning 20-qlora.pdf Link
04/04 Reinforcement Learning from Human Feedback 21-rlhfuse.pdf Link
04/09 Prompt Engineering 22-dspy.pdf Link
04/11 Structured Language Model Programs 23-sglang.pdf Link
04/16 Project Presentation
04/18 Project Presentation
04/23 NO CLASS (Finish Project Report) Project Final Report Due