INTRODUCTION TO THE DESIGN & ANALYSIS OF ALGORITHMS

Lecture Schedule

Date Lecture Topic Reference
M 8/28 1 Introduction [Er0]
W 8/30 2 Divide & Conquer I: Recursion and Mergesort [DPV2,Er1]
W 9/6 3 Divide & Conquer II: Randomized Quicksort [Er1, Ed2]
M 9/11 4 Divide & Conquer III: Selection [DPV2,Er1]
W 9/13 5 Parallel Algorithms I: Concepts and Analysis [CLRS27]
M 9/18 6 Parallel Algorithms II: Algorithm Design [CLRS27]
W 9/20 7 Dynamic Programming I: Introduction,Sequence Alignment [DPV6,Er3]
M 9/25 8 Dynamic Programming II: Knapsack, Chain Matrix [DPV6,Er3]
W 9/27 9 Graph Traversal I: Depth-First Search, Topological Sort [DPV3,Er6]
M 10/2 10 Graph Traversal II: Breadth-First Search [DPV4,Er5]
W 10/4 11 Shortest Paths I: Dijkstra's Algorithm [DPV4,Er8]
M 10/9 12 Shortest Paths II: A*, Bellman-Ford, Floyd Warshall [DPV4,Er8,9]
W 10/11 13 Greedy I: Scheduling and Compression  
W 10/18 14 Industry guest speaker(s) [DPV5,Er4]
M 10/23 15 MIDTERM EXAM (Lectures 1-12)  
W 10/25 16 Greedy II: Minimum Spanning Tree [DPV5,Er7]
M 10/30 17 Cuts and Flows I: Max-flow and Min-cut [Er10]
W 11/1 18 Cuts & Flows II: Computing flows [Er10]
M 11/6 19 Hardness I: Complexity Classes and NP-Completeness [DPV8,Er12]
W 11/8 20 Hardness II: NP-Complete Problems and Reductions [DPV8,Er12]
M 11/13 21 Hardness III: More reductions and implications [DPV8,Er12]
W 11/15 22 Approximation: Greedy scheduling, Traveling Salesperson TBA
M 11/20 23 Big Data 1: Clustering-Greedy [CLRS33,Ph8]
M 11/27 24 Big Data 2: Clustering-kmeans and randomized [CLRS33,Ph8]
W 11/29 25 Big Data 3: Hashing [ErApp5]
M 12/4 26 Big Data 4: Sketching [CY3]
W 12/6 27 LATE-TERM EXAM (L14-25) [CLRS27]
Th 12/14 Exam FINAL EXAM 2-5 pm (All lectures)