INTRODUCTION TO THE DESIGN & ANALYSIS OF ALGORITHMS

Schedule

     
Week Date Class Num Class Topic References Release Due (by 11:59 pm)
1 M 8/28 L01 Introduction [Er0]
W 8/30 L02 Divide & Conquer I: Recursion and Mergesort [DPV2,Er1] HW 1 (Preq)
F 9/1 R01 Prerequisites  
2 M 9/4   LABOR DAY - NO MEETING
W 9/6 L03 Divide & Conquer II: Randomized Quicksort [Er1,Ed2] HW 2 (Divide & Conquer)  
Th 9/7       HW 1
F 9/8 R02 Divide and Conquer  
3 M 9/11 L04 Divide & Conquer III: Selection [DPV2,Er1]
W 9/13 L05 Parallel Algorithms I: Concepts and Analysis [CLRS27] HW3 (Parallel Algorithms)  
Th 9/14       HW 2
F 9/15 R03 Divide & Conquer and Parallel Algorithms  
4 M 9/18 L06 Parallel Algorithms II: Algorithm Design [CLRS27]
W 9/20 L07 Dynamic Programming I: Introduction,Sequence Alignment [DPV6,Er3] HW 4(dynamic programming)  
Th 9/21     HW 3
F 9/22 R04 Parallel Algorithms and Dynamic Programming
5 M 9/25 L08 Dynamic Programming II: Knapsack, Chain Matrix [DPV6,Er3]
W 9/27 L09 Graph Traversal I: Depth-First Search, Topological Sort [DPV3,Er6] HW 5 (DP & DFS)  
Th 9/28       HW 4
F 9/29 R05 Dynamic Programming and Graph Traversal  
6 M 10/2 L10 Graph Traversal II: Breadth-First Search [DPV4,Er5]
W 10/4 L11 Shortest Paths I: Dijkstra's Algorithm [DPV4,Er8] HW 6 (Shortest Paths)  
Th 10/5         HW 5
F 10/6 R06 Graph Traversal II: Breadth-First Search and Shortest Paths I: Dijkstra's Algorithm    
7 M 10/9 L12 Shortest Paths II: A*, Bellman-Ford, Floyd Warshall [DPV4,Er8,9]
W 10/11 L13 Greedy I: Scheduling and Compression      
Th 10/12      HW 6
F 10/13 R07 Shortest Paths II: A*, Bellman-Ford, Floyd Warshall  
8 M 10/16   FALL BREAK - NO MEETING
W 10/18 L14 Industry guest speaker(s) [DPV5,Er4]  
F 10/20 R08 Exam Review
9 M 10/23 L15 MIDTERM EXAM (Lectures 1-12)   Case Study
W 10/25 L16 Greedy II: Minimum Spanning Tree [DPV5,Er7] HW 7 (Greedy Algorithms)  
F 10/27 R09 Greedy Algorithms    
10 M 10/30 L17 Cuts and Flows I: Max-flow and Min-cut [Er10]
W 11/1 L18 Cuts & Flows II: Computing flows [Er10] HW 8 (Cuts and Flows)  
Th 11/2     HW 7
F 11/3 R10 Cuts and Flows  
11 M 11/6 L19 Hardness I: Complexity Classes and NP-Completeness [DPV8,Er12]
W 11/8 L20 Hardness II: NP-Complete Problems and Reductions [DPV8,Er12] HW 9 (Hardness)  
Th 11/9      HW 8
F 11/10 R11 Hardness  
12 M 11/13 L21 Hardness III: More reductions and implications [DPV8,Er12]
W 11/15 L22 Approximation: Greedy scheduling, Traveling Salesperson DPV9.2, ErAppJ  
Th 11/16      HW 9
F 11/17 R12 Hardness and Approximation  
13 M 11/20 L23 Big Data 1: Clustering-Greedy [CLRS33,Ph8] HW 10 (More Hardness, Big Data)  
Tu 11/21         Case Study
W 11/22   THANKSGIVING BREAK - NO MEETING    
F 11/24   THANKSGIVING BREAK - NO MEETING  
14 M 11/27 L24 Big Data 2: Clustering-kmeans and randomized [CLRS33,Ph8]
W 11/29 L25 Big Data 3: Hashing [ErApp5]  
F 12/1 R13 Big Data    
15 M 12/4 L26 Big Data 4: Sketching [CY3] HW10
W 12/6 L27 LATE-TERM EXAM (L14-25)    
F 12/8 R14      
16 M 12/11   NO MEETING, READING PERIOD
W 12/13   EXAM PERIOD    
Th 12/14   FINAL EXAM 2-5 pm